75 YEARS OF QUANTUM ENTANGLEMENT: FOUNDATIONS AND INFORMATION THEORETIC APPLICATIONS

S. N. Bose National Centre for Basic Sciences Silver Jubilee Symposium

Kolkata, India 6 – 10 January 2011

EDITORS

Dipankar Home Bose Institute, Kolkata, India

Guruprasad Kar Indian Statistical Institute, Kolkata, India

Archan S. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata, India

All papers have been peer reviewed.

SPONSORING ORGANIZATIONS

S. N. Bose National Centre for Basic Sciences Bose Institute Indian Statistical Institute, Kolkata Indian Institute of Science Education and Research, Mohali Indian Institute of Science Education and Research, Pune Institute of Mathematical Sciences CSIR India DST, Inspire Indian National Science Academy Kerala State Higher Education Council Besco Limited Shah Alloys Pvt. Ltd. Daya Engineering Works Pvt. Ltd. Vishal Nirmiti Pvt. Ltd Kingfisher Packaged Drinking Water Antiquity Music CDS Calcutta Club The Telegraph Knowhow

Melville, New York, 2011 AIP | CONFERENCE PROCEEDINGS ■ 1384

Editors

Dipankar Home CAPSS, Bose Institute Block EN, Sector V, Salt Lake Kolkata 700091, India

E-mail: dhome@bosemain.boseinst.ac.in

Guruprasad Kar PAMU, ISI Kolkata 203 B. T. Road Kolkata 700108, India

E-mail: gkar@isical.ac.in

Archan S. Majumdar S. N. Bose National Centre for Basic Sciences Block JD, Sector III, Salt Lake Kolkata 700098, India

E-mail: archan@bose.res.in

Authorization to photocopy items for internal or personal use, beyond the free copying permitted under the 1978 U.S. Copyright Law (see statement below), is granted by the American Institute of Physics for users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$30.00 per copy is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923, USA. For those organizations that have been granted a photocopy license by CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Services is: 978-0-7354-0945-3/11/\$30.00

© 2011 American Institute of Physics

No claim is made to original U.S. Government works.

Permission is granted to quote from the AIP Conference Proceedings with the customary acknowledgment of the source. Republication of an article or portions thereof (e.g., extensive excerpts, figures, tables, etc.) in original form or in translation, as well as other types of reuse (e.g., in course packs) require formal permission from AIP and may be subject to fees. As a courtesy, the author of the original proceedings article should be informed of any request for republication/reuse. Permission may be obtained online using Rightslink. Locate the article online at http://proceedings.aip.org, then simply click on the Rightslink icon/"Permission for Reuse" link found in the article abstract. You may also address requests to: AIP Office of Rights and Permissions, Suite 1NO1, 2 Huntington Quadrangle, Melville, NY 11747-4502, USA; Fax: 516-576-2450; Tel.: 516-576-2268; E-mail: rights@aip.org.

L.C. Catalog Card No. 2011911417 ISBN 978-0-7354-0945-3'*Qtli kpcrlRtkpv+ ISSN 0094-243X Printed in the United States of America

AIP Conference Proceedings, Volume 1384 75 Years of Quantum Entanglement: Foundations and Information Theoretic Applications S. N. Bose National Centre for Basic Sciences Silver Jubilee Symposium

Table of Contents

Preface: 75 Years of Quantum Entanglement: Foundations and Information Theoretic Applications	
Dipankar Home, Guruprasad Kar, and Archan S. Majumdar	1
Commitees and Sponsors	1
Group Photo	2
•	4
FOUNDATIONAL ASPECTS	
Philosophical lessons of entanglement Anthony Sudbery	7
Time-symmetry, weak measurements and dynamical non-locality in quantum mechanics Jeff Tollaksen	15
Entanglement, the quantum formalism and the classical world A. Matzkin	27
Entanglement and the quantum spatial continuum John V. Corbett	34
Facets of contextual realism in quantum mechanics Alok K. Pan and Dipankar Home	42
Experiments for realising pragmatic protective measurements N.D. Hari Dass	51
Entanglement and new perception of informatics Jozef Gruska	59
QUANTUM INFORMATION THEORY AND APPLICATIONS	
Unification of quantum and classical correlations and quantumness measures ¹ Kavan Modi and Vlatko Vedral	69
Quantum states, entanglement and closed timelike curves Arun K. Pati, Indranil Chakrabarty, and Pankaj Agrawal	76
Sub-Planck structures and quantum metrology Prasanta K. Panigrahi, Abhijeet Kumar, Utpal Roy, and Suranjana Ghosh	84

A proposal to generate entangled compass states with sub-Planck structure Sayan Choudhury and Prasanta K. Panigrahi	91	
Cosmological dark energy and entanglement Sanjay K. Ghosh and Sibaji Raha	97	
Efficient energy transport in photosynthesis: roles of coherence and entanglement Apoorva D. Patel	102	
Swapping path-spin intraparticle entanglement onto spin-spin mixed interparticle entanglement involving amplitude damping channel Satyabrata Adhikari, A. S. Majumdar, D. Home, and A. K. Pan	108	
Towards normal forms for GHZ/W calculus Shibdas Roy	112	
Schmidt strength of the geometrical edges of two-qubit gates S. Balakrishnan and R. Sankaranarayanan	120	
Non zero moments of some entangled three qubit symmetric states Swarnamala Sirsi and Veena Adiga	125	
Entanglement transport in quantum spin chain systems Sujit Sarkar	131	
Magnetically induced variation of tunneling current and nonclassicality in a coupled quantum dot system Kinshuk Banerjee and Gautam Gangopadhyay	137	
Recent trend of development in quantum finite automata Soumya Debabrata Pani and Chandan Kumar Behera	143	
ENTANGLEMENT IN QUANTUM OPTICS		

Quantum optical nonclassicality for single-mode radiation fields and conversion to entanglement N. Mukunda	153
Nonclassicality and entanglement in multimode radiation fields under the action of classicality preserving devices S. Chaturvedi	159
Correlations and thermalization in driven cavity arrays Li Dai, Dimitris G. Angelakis, Leong Chuan Kwek, and S. Mancini	168
Wigner distribution function and entanglement of quantum optical elliptical vortex Abir Bandyopadhyay, Shashi Prabhakar, and R. P. Singh	177

Atomic entanglement mediated by various non-classical cavity fields Papri Saha, A. S. Majumdar, and N. Nayak	183
Bloch equation and atom-field entanglement scenario in three-level systems Surajit Sen, Mihir Ranjan Nath, Tushar Kanti Dey, and Gautam Gangopadhyay	190
EXPERIMENTAL ADVANCES	
Basic features of quantum physics studied with neutrons Helmut Rauch	199
Spin-path entanglement in single-neutron interferometer experiments Yuji Hasegawa and Daniel Erdősi	213
Two-photon imaging with entangled and thermal light Ling-An Wu and Kai-Hong Luo	223
Non-destructive discrimination of arbitrary set of orthogonal quantum states by NMR using quantum phase estimation V. S. Manu and Anil Kumar	229
Foundations of quantum mechanics: recent developments at INRIM Marco Genovese and Fabrizio Piacentini	241
Towards using molecular states as qubits Debabrata Goswami, Tapas Goswami, S. K. Karthick Kumar, and Dipak K. Das	251
Born rule(s) Urbasi Sinha	254
Experimental quantification of entanglement in quantum spin systems Diptaranjan Das, Tanmoy Chakraborty, Tamal K. Sen, Harkirat Singh, Swadhin K. Mandal, and Chiranjib Mitra	261
Author Index	271