28th Heat Treating Society Conference (HEAT TREATING 2015)

Detroit, Michigan, USA 20 – 22 October 2015

ISBN: 978-1-5108-1510-0

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2015) by ASM International All rights reserved.

Printed by Curran Associates, Inc. (2016)

For permission requests, please contact ASM International at the address below.

ASM International 9639 Kinsman Road Materials Park, Ohio 44073

Phone: (440) 338-5151

memberservicecenter@asminternational.org

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2634 Email: curran@proceedings.com Web: www.proceedings.com

Contents

Advanced Processes

Beyond Larsen Miller

A.R. Ramakrishnan and M. Grenier Pyromaitre

Vacuum Furnaces Were Made for Additive Manufacturing

Robert Hill

Advances in Heat Treating

Laser Heat Treatment with Latest System Components

Steffen Bonss, Jan Hannweber, Udo Karsunke, Stefan Kuehn, Marko Seifert, Dirk Poegen, and Eckhard Beyer Fraunhofer IWS

Replacing Hot Stamped, Boron, and DP1000 with Room Temperature Formable Flash Bainite 1500 Advanced High-Strength Steel

Gary M Cola, Jr., SFP Works, LLC

Residual Stress Distribution in Induction Hardened Gear Dmitry Ivanov, John Inge Asperheim, and Leif Markegård EFD Induction a.s.

Heat Treating 400-Series Stainless in Air without Flaking Susan J. Kerber, Material Interface, Inc.

Austempering Treatment in HIP Improves Ausferritic Steels and Ductile Irons

Richard Larker¹ and Per Rubin² (1) Indexator Materials Technology AB (2) Rubin Materialteknik

Behavior of a Complex Steel Part during Hardening Heat Treatment Vishal R. Marje, Srivatsa Kulkarni, G. Balachandran, and V. Balasubramanian, Kalyani Carpenter Special Steels Ltd.

New Technical Resource for Induction Heat Treating Professionals Valery Rudnev, Inductoheat Inc.

The Effects of Tempering on the Structure of Martensite in 52100 Steel Haixuan Yu, Yuan Lu, Xiaoqing Cai, and Richard D.Sisson, Jr. Worcester Polytechnic Institute

High Temperature Austenitizing of Low Alloy Steels—What is Left after 40 Years?

Donato Firrao, Paolo Matteis, Pietro Cornetti, and Alberto Sapora Politecnico di Torino (Turin Technical University)

Development of Nanostructured Austempered Ductile Cast Iron

Susil K. Putatunda, Saranya Panneerselvam, and Mohamed Alshwigi Wayne State University

Analysis of Heat Treat Growth on Carburized Ring Gear and Multivariate Regression Model Development

Olga K. Rowan and Thomas J. Yaniak Caterpillar Inc.

Design and Validation of Induction Heat Treatment Processes Utilizing 2D and 3D Computer Simulation

Collin Russell, Inductoheat Inc. (Inductotherm Group)

Principles of Heat Treatment Processes Modeling

Emilia Wołowiec-Korecka, Worcester Polytechnic Institute

Aluminum, Titanum, Copper Alloys, Refractory Metals, Etc.

Analyses of Aging in Aluminum Cast Alloys by X-Ray Diffraction

M. Delgado¹, F.A. Pérez-González¹, N.F. Garza-Montes-de-Oca, R. Colás¹, C.S. Cázares²,

J.A. González², J. Talamantes-Silva², and S. Haro³

(1) Universidad Autónoma de Nuevo León

(2) Nemak México

(3) Universidad Autónoma de Zacatecas

New Heat Treatment Technologies for Aluminum Automotive Body Structures Tim Donofrio

Quenching and Distortion Analyses in Aluminum

L. Espinosa¹, O. Zapata¹, F.A. Pérez-González¹, L.A. Reyes¹, R. Colás¹, K. Mariella², and A. Cantú² (1) Universidad Autónoma de Nuevo León

(2) Nutec Bickley

Microstructure Effects on Tensile Brittleness of As-Quenched Zl205A at

Elevated Temperature

Wang Wenguang¹, Wang Gang¹, Rong Yiming¹, and Guannan Guo² (1) Tsinghua University (2) Worcester Polytechnic Institute

Effects of Deformation and Heat Treatment on Microstructure and Mechanical Properties of Ti-6Al-4V Alloy

Ashish Supare, Shital Jadhav, Sandip Patil, Amit Powar, Bhagwan Farane, and Rajkumar Singh Bharat Forge Ltd.

Applied Energy

Effect of Steel Hardenability on Stress Formation in an Induction Hardened Axle Shaft

*B. Lynn Ferguson*¹, Justin Sims¹, Z. Charlie Li¹, Valentin Nemkov², Robert Goldstein², and John Jackowski² (1) DANTE Solutions, Inc.

(2) Fluxtrol, Inc.

Torsional Fatigue Behavior of Through Surface Hardened Low Hardenability Steel Compared To Gas Carburized SAE 8620 Steel

Erin M. Govier, Matthew Glass, and James Larsen Eaton

The Pick-Up-Revolution for Hardening CV-Joints—Combining Multiple Heat Treating Operations into the Same Set-Up for Speed, Process Stability, and Ease of Integration into the Process Chain

Christian Krause¹, Mark Davis², and Dirk Schlesselmann¹ (1) EMAG eldec induction GmbH (2) eldec LLC

Effective Ways of Joining Using Induction Heating Technology

Scott R. Larrabee, Radyne Corporation

Breakthrough in Induction Hardening Shafts

Valery Rudnev, William West, Aaron Goodwin, and Steve Fillip Inductoheat Inc.

Evaluation of Mechanical Properties and Analysis of Rapidly Heat Treated

M-42 High-Speed Steels

R.N. KarthikBabu, R. Sarvesh, Prasad A. Rajendra, and G. Swaminathan Sri Sairam Engineering College

Applied Technology

Advances in Power Supplies for Efficient Electric Heating Souheil Benzerrouk, Warner Power LLC

Multiple Chamber Vacuum Furnace Designs Improve Efficiency,

Part Appearance, and Hot Zone Maintenance Benjamin T. Bernard, Surface Combustion, Inc.

The 1:1 Rule for Quench Tanks—A Suboptimal and Misapplied Design Criterion *William J. Bernard, III, Surface Combustion, Inc.*

Specifying Nitriding Process Requirements

- Madhu S. Chatterjee¹ and Roxana Ruxanda²
- (1) General Motors
- (2) Emerson Climate Technologies

Obtaining Nadcap Accreditation—Helping You Pass Your Audit

Nathan Durham, Ipsen

Choosing the Proper Heat Resistant Alloy Based on Application Criteria *Marc Glasser, Rolled Alloys*

RA 602 CA—An Alloy for the Highest Temperature Processes Marc Glasser, Rolled Alloys

The Growth of Predictive Maintenance and Its Effect on Future Furnace Performance Aymeric Goldsteinas, Ipsen USA

Retiring Paper-Based Maintenance Systems in Commercial Heat Treating Shops *Roger A Jones, Solar Atmospheres, Inc.*

Heat Treating in the Digital Age

Bill Klick, O'Brien & Gere (Denton TSI)

Maximizing the Work Zone with Creative Fixtures

Robert E. Kornfeld, Hi-Tech Furnace Systems, Inc.

Reducing Ammonia Consumption and Emissions Using Zeroflow Gas Nitriding

Leszek Małdziński¹ and Mark K. Hemsath² (1) Poznan University of Technology (2) SECO/Warwick Corp.

Understanding Furnace Atmosphere Composition for Neutral and Gas Carburizing Applications

Jim Oakes, Super Systems Inc.

Understanding Process Sensitivities in Press Quenching—An integrated Approach

Arthur C. Reardon^{1,} Andrew Freborg², Z. Charlie Li², and B. Lynn Ferguson² (1) The Gleason Works (2) DANTE Solutions Inc.

Effects of Polymer Concentration in Quenchant Bath

Justin Schlitzer and John Hollenbeck Honeywell Federal Manufacturing and Technologies LLC

Everything You Wanted To Know About AMS2750E but Were Afraid To Ask

Jason Schulze, Director of Technical Services

Hydroprime Modular Plants Provide Low Cost, Reliable Hydrogen for Heat Treating

Goutam H. Shahani¹, Kyle Finley¹, Larry Lyda¹, Grzegorz Moroz², and Nick Onelli² (1) Hydro-Chem, Canton (2)Linde LLC Murray Hill

Next Gen Technology—Wearables and Predictive Maintenance in Heat Treatment

Peter Sherwin, Eurotherm by Schneider Electric

Prediction of Mechanical Properties and Microstructure Composition of Quenched and Tempered Steel

Božo Smoljan, Dario Iljki, and Neven Tomaši University of Rijeka

Furnace Atmosphere Troubleshooting—Producing the Highest Quality Stainless Steel Cutlery *Richard F. Speaker, Air Liquide Industrial U.S. LP*

Rockwell Hardness Bench Testing of Induction Heat Treated Work Pieces *F. R Specht, North America Interpower Induction USA*

Controlled Gas Nitriding/Nitrocarburizing Process Control and Precalculation Possibilities

S. Heineck and Frank Theisen STANGE Elektronik GmbH

How It's Done and Why—Transitioning Parts from Atmosphere Carburizing to

Low-Pressure Vacuum Carburizing

Vincent Lelong¹ and Amberlee Welch² (1) ECM-USA, Inc. (2) Nexteer Automotive

Temperature Processing Evolves Atmosphere Practices to Meet Community Needs—At a Profit

David Wolff¹, Will Engelhard², and Richard Brennan³ (1) Proton OnSite (2) Temperature Processing (3) Thermo Products

Best Practice for Design and Manufacturing of Heat Treating Inductors

C.Yakey, V. Nemkov, R. Goldstein, and J. Jackowski Fluxtrol Inc.

Enhancement of Carbonitride Tool—Retained Austenite and Microhardness Prediction

Lei Zhang, Liang He, and R.D. Sisson Jr. Worcester Polytechnic Institute

Technology and Advancements in Analog and Digital Control

Steve Miller, Eurotherm

Atmosphere Technology

Optimization of Protective Atmospheres for Annealing and Hardening Operations in Continuous Furnaces

Liang He and Zbigniew Zurecki Air Products and Chemicals, Inc.

Plasma Nitriding Potential and a New Modeling Approach for Plasma Nitriding Process Control

Marian Georg Skalecki¹, Heinrich Klümper-Westkamp¹, Franz Hoffmann¹, Hans-Werner Zoch¹, Sebastian Bischoff², and Jörn Rohde² (1) Stiftung Institut für Werkstofftechnik (IWT) (2) Rohde Schutzgasöfen GmbH

Microstructure Development

Improvement in Mechanical Properties of 13Cr Martensitic Stainless Steels Using Modified Heat Treatments

Srivatsa Kulkarni, Perla Srinivas, P.K. Biswal, G. Balachandran, and V. Balasubramanian Kalyani Carpenter Special Steels Pvt. Ltd.

Determination of the Cause of Low Temperature Charpy Toughness Values in ASTM A350 LF2 Flanges

Andrew B. Nissan and Kirk C. Baker Chevron

Microstructure and Failure Analysis of Austenitic Fe-Ni Alloys and Ni-Cr-Fe Alloys for Furnace Alloys and Fixtures

Anbo Wang and R.D. Sisson, Jr. Worcester Polytechnic Institute

Effect of Heat Treatment on the Microstructure, Mechanical Properties, and Corrosion Behavior of Ti-6Al-4V via Direct Metal Laser Sintering

Yangzi Xu, Yuan Lu, and R.D. Sisson, Jr. Worcester Polytechnic Institute

Meandering Winding Magnetometers for the Evaluation of Surface Hardness on Carburized Steel

Lei Zhang and Richard D. Sisson, Jr. Worcester Polytechnic Institute

The Influence of Temperature on the Austenite Grain Size and Microstructure of 4140 Steel

Rui Zhang and Richard D. Sisson, Jr. Worcester Polytechnic Institute

Processes and Applications

Induction Coupled Thermomagnetic Processing

Aquil Ahmad¹ and George Pfaffmann² (1) Eaton (2) Ajax Tocco Incorporated

How Mass Imbalance and Cold-Sink Effects influence Induction Hardened Case Depth Andrew Bernhard, Radyne

Effect of Deep Cryogenic Treatment on AISI H13 Tool Steel

Valmik Bhavar, Shreyans Khot, Prakash Kattire, Mohan Mehta, and R.K.P. Singh Pune

Advanced Robotics in Heat Treat Verification Using Eddy Current

Dan DeVries, Criterion NDT

Torsional Fatigue Behavior of 8620 Steel Subjected to High-Magnetic Field Thermal Processing James M. Larsen, Erin M. Govier, and Matthew J. Glass

Eaton Vehicle Group

Applying and Specifying Metallurgical Engineering in the Production of

Heavy Truck Axle Shafts

Steven C. Heifner, Sypris Technologies, Inc.

Ten New Trends in Heat Treatment—Global Prospective Janusz Kowalewski

Mechanical Properties and Microstructure of AISI 41B30 Forgings in

As-Forged and Normalized Condition

Dusan Milicevic, Commercial Forged Products Inc.

Energy Savings through Steady State Control

Chris Mooney, Eurotherm by Schneider Electric

Austempering: Process, Applications, and Equipment

Wallace John Titus and Michael E. Neumann AFC-Holcroft LLC

The Sub-Zero Celsius Treatment of Precipitation Hardenable Semi-Austenitic Stainless Steels

Matteo Villa, Mikkel F. Hansen, and Marcel A.J. Somers Technical University of Denmark

Sustainable Energy Efficiency in Industry Michael L. Stowe, Advanced Energy

Overview of Computational Fluid Dynamics Modeling for Furnace Design and Improvements *Ronald E. Waligora, AFC-Holcroft LLC*

Simulation of Nitriding Processes Karl-Michael Winter, Process-Electronic GmbH

Quenching and Cooling

Countermeasures for Various Defective Phenomenon in the Heat Treatment Process

Katsumi Ichitani and Yuji Arita Idemitsu Kosan Co., Ltd.

Controlled Cooling as an Alternative to Normalizing/Isoannealing Heat Treatment of Case Carburizing Grade Steel Forgings

Priyanshu Bajaj¹, Pallav Chatterjee², and Udayan B. Pathak²

(1) Kalyani Forge Limited

(2) Tata Motors Limited

High-Strength Steel Bainitizing Using Controlled In Situ Gas Quenching within Machining Processes

Thibaud Bucquet, Udo Fritsching, Maxim Gulpak, and André Wagner IWT Bremen

Quenching Process Analysis of an Aluminum Cylinder Using Computational Fluid Dynamics

Alberto Cantu-Perez¹, Nutec Bickley², Rafael Colás², Luis Espinosa², Omar Rodriguez³, and Arturo Keer³ (1) Karlo Mariella

(2) Universidad Autónoma de Nuevo León

(3) Instituto Tecnológico Sanmiguelense

Role of Staggered-Array Water Jet on Intensive Quenching for Heat Treatment

Jungho Lee¹, Tae Hoon Kim¹, Kyu Hyung Do¹, Sangho Sohn¹, Seong Hyuk Lee², and Chang Kyung Choi³ (1) Korea Institute of Machinery and Materials (KIMM)

(2) Chung-Ang University

(3) Michigan Technological University

Coupling CFD and Oil Quench Hardening Analysis of Gear Component

Zhichao (Charlie) Li¹, B. Lynn Ferguson¹, David Greif², Zlatko Kovacic², Simon Urbas², and Rok Kopun² (1) DANTE solutions (2) AVL-AST d.o.o.

Critical Heat Transfer Coefficient Test for Gas Quench Steel Hardenability

Yuan Lu¹, R.D. Sisson, Jr¹, Yiming (Kevin) Rong¹, and Jeffrey Mocsari² (1) Worcester Polytechnic Institute (2) Metals & Combustion R&D

Application of Vegetable-Based Quench Oil to Achieve Safety and Environmental Advantages

Jonn Nebbe¹ and D. Scott MacKenzie² (1) Eaton Corporation (2) Houghton International

Defining the Adequacy of Direct Harden Water Quench Systems

Michael A. Pershing, Christopher A. Barnes, and Zachary S. Birky Caterpillar Inc.

Impact of Internal Oxidation and Quenching Path on Fatigue of Powertrain Components

A. Stormvinter, H. Kristoffersen, E. Troell, J. Senaneuch, and S. Haglund Swerea KIMAB AB

Metallurgical Behavior of SAE 1045 Steel Quenched into Chemically Modified Bioquenchants

Rosa L. Simencio Otero¹, Lauralice C.F. Canale¹, and George E. Totten² (1) University of São Paulo (2) G.E. Totten & Associates, LLC

Predictive Model of Wire Rod Cooling

Iván Viéitez, Rubén López-Cancelos, Elena B. Martín, and Fernando Varas University of Vigo

Effect of Hardenability on Temperature and Phases of Spiral Bevel Gear in Press Quenching Process

Gang Wang¹, Yingtao Zhang¹, Lin Yang², Lei Cui², and Zhichao (Charlie) Li³

(1) Tsinghua University

(2) China FAW Group Corporation R&D Center

(3) DANTE Solutions, Inc.

Implementation of a Boiling Heat Transfer Model Based on an Experimental Database

Andrew L. Banka and Jeffrey D. Franklin Airflow Sciences Corporation

Geometry Optimized Quenching

Cato Dybdahl¹ and Fredrik Haakonsen² (1) Sintef Raufoss Manufacturing (2) Kverneland Group Operations Norway

Enhanced Heat Transfer Coefficient Method to Model Air Quench Process—Investigation of Heat Transfer Coefficient Characteristics by CFD Methods

James Jan, Eben Prabhu, Xingfu Chen, and Ulrich Weiss Ford Motor Company

Ring Gear Microstructure and Heat Treat Response

Ying-Liang R. Lee, Olga K. Rowan, and Michael A. Pershing Caterpillar Inc.

Evaluation of Ultra-High Gas Pressure Quenching during HIP

Stephen J. Mashl¹, Anders Eklund², and Magnus Ahlfors³

(1) Michigan Technological University

(2) Quintus Technologies, LLC

(3) Avure Technologies AB

Quench Tank Agitation Design through CFD Simulation

Andrew L. Banka¹, John D. Nitz¹, Chris Desadier², Jianhua Xie², and Xiping Zhang³
(1) Airflow Sciences Corporation
(2) National Oilwell Varco XL Systems
(3) Jiangsu Shuguang Oil Tools Limited

Direct Forge Quenching of Medium Carbon and Low-Alloy Steel Forgings

Priyanshu Bajaj¹ and Udayan B. Pathak² (1) Kalyani Forge Limited (2) Tata Motors Limited

Stabilization of Vegetable Oil-Based Quenchants to Thermal-Oxidative Degradation— (Part I) Effect of Antioxidants on Quenching Performance

Éder Cícero Adão Simêncio¹, Rosa L. Simencio Otero¹, Lauralice C.F. Canale¹, and George E. Totten² (1) University of São Paulo (2) G.E. Totten & Associates, LLC

Surface Engineering

Optimizing Surface Activation for Repeatable Compound Layer Growth Zachary S. Birky, Caterpillar Inc.

Evolution of Steel Surface Morphology during Controlled Gaseous Nitriding

D. Koshel¹, J. Kalucki¹, M. Ellaya¹, and C. Harnagea² (1) Nitrex Metal Inc. (2) INRS-EMT 1650

Torsional Fatigue Performance of Induction Hardened 1045 and 10V45 Steels

Lee Rothleutner¹, Robert Cryderman¹, Chester J. Van Tyne¹, and Jody Burke²

(1) Colorado School of Mines

(2) Gerdau Special Steel North America

Modelling of Composition and Stress Profiles in Low-Temperature Surface Engineered Stainless Steel

Freja N. Jespersen, Jesper H. Hattel, and Marcel A.J. Somers Technical University of Denmark

Influence of Plastic Deformation on Low-Temperature Surface Hardening of Stainless Steel by Gaseous Nitriding

Federico Bottoli, Grethe Winther, Thomas L. Christiansen, and Marcel A.J. Somers Technical University of Denmark

Internal Nitriding of Fe-Cr-Mo Alloys—Precipitation of Mixed Nitrides and Role of the Cr/Mo-Ratio

Tobias Steiner¹, Sai Ramudu Meka¹, Eric J. Mittemeijer¹, and Thomas Waldenmaier² (1) Max Planck Institute for Intelligent Systems (formerly MPI for Metals Research) (2) Robert Bosch GmbH

Microstructural Evaluation of Salt Nitrocarburizing as a Function of Time

Julio Alberto Juarez-Islas¹ and Mario Fabian Mendez²

(1) Universidad Nacional Autonoma de Mexico

(2) Especialidades Termicas

Vacuum Processes and Technology

New Applications for Synchronized Vacuum Heat Treatment

Volker Heuer¹, Dr. Klaus Löser¹, and Bill Gornicki² (1) ALD-Vacuum Technologies GmbH (2) ALD-Holcroft

Minimizing Alpha Case during Vacuum Furnace Heat Treating Donald Jordan, Solar Atmospheres

Dynamic Fluoride Ion Cleaning as a Pre-Braze Process

Robert E. Kornfeld, Hi-Tech Furnace Systems, Inc.

Low Pressure Carburizing in a Vacuum Furnace

Thomas Lord, Seco/Warwick

Maximizing Quenching and Cooling in Vacuum Heat Treating

Thomas Wingens, Tenova Core Inc.

Posters

Comparative Impact Behavior of High C Steel after Conventional Quenching and Tempering and Austempering

- Jan Vatavuk¹, George E. Totten², José E. Nucci³, Luigi L.M. Albano³, and Lauralice de C.F. Canale³
- (1) Universidade Presbiteriana Mackenzie
- (2) Portland State University
- (3) University of São Paulo

Modeling and Optimization of Metal Induction Heating before Hot Forming and Heat Treatment

Yuliya Pleshivtseva, Samara State Technical University

Effect of Heating Rate on the Microstructure and Fatigue Properties of 2524 Aluminum Alloy

Cong Tang, Danqing Yia, Bin Wanga, Huiqun Liua, Fanghua Shena, and Zhe Tiana Central South University

Influence of Sintering Atmosphere in the Hardness and Corrosion Resistance of 17-4 PH Stainless Steel Shaped from Powder Injection Molding Process

Willian Januário de Freitas¹, Gustavo Satoru Takeya², Luiz Carlos Casteletti², and George Edward Totten³ (1) 3M Brazil

- (2) Universidade de São Paulo
- (3) Portland State University

Boroaustempering Treatment on Alloyed Ductile Irons

Fábio Edson Mariani¹, Gustavo Satoru Takeya¹, Luiz Carlos Casteletti¹, Amadeu Lombardi Neto², and George Edward Totten³

- (1) Universidade de São Paulo
- (2) Universidade Tecnológica Federal do Paraná
- (3) Portland State University

Wear Properties of a Gray Cast Iron Coated with Niobium Carbide Produced by Pack Process

Fábio Edson Mariani¹, Gustavo Bortoluci de Assis¹, Luiz Carlos Casteletti¹, Amadeu Lombardi Neto², and George Edward Totten³

- (1) Universidade de São Paulo
- (2) Universidade Tecnológica Federal do Paraná
- (3) Portland State University

Study of Boriding Kinetics for Alloyed Ductile Irons

Fábio Edson Mariani¹, Galtiere Correa Rego¹, Luiz Carlos Casteletti¹, Amadeu Lombardi Neto², and George Edward Totten³

- (1) Universidade de São Paulo
- (2) Universidade Tecnológica Federal do Paraná
- (3) Portland State University

Influence of Boriding Treatment on the Oxidation Resistance of the AISI H13 Tool Steel

Stenio Cristaldo Heck¹, Gustavo Satoru Takeya¹, Luiz Carlos Casteletti¹, Amadeu Lombardi Neto², and George Edward Totten³

- (1) Universidade de São Paulo
- (2) Universidade Tecnológica Federal do Paraná
- (3) Portland State University

Heat Treatment of Precipitation-Hardening Stainless Steels Alloyed with Niobium

Luiz Carlos Casteletti¹, Fábio Edson Mariani¹, Amadeu Lombardi Neto², André Itman Filho³, and George Edward Totten⁴

(1) Universidade de São Paulo

(2) Universidade Tecnológica Federal do Paraná

(3) Instituto Federal do Espírito Santo

(4) Portland State University