12th International Conference on Pressure Surges

Dublin, Ireland 18 – 20 November 2015

ISBN: 978-1-5108-1718-0

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2015) by BHR Group All rights reserved.

Printed by Curran Associates, Inc. (2015)

For permission requests, please contact BHR Group at the address below.

BHR Group The Fluid Engineering Centre Cranfield, Bedfordshire MK43 0AJ United Kingdom

Phone: +44 1234 750422 Fax: +44 1234 750074

info@bhrgroup.com

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2634 Email: curran@proceedings.com Web: www.proceedings.com

12th International Conference on

PRESSURE SURGES

Dublin, Ireland: 18–20 November 2015

CONTENTS

FOREWORD	1
VICTOR L STREETER – OBITUARY	3
ACCIDENTS AND INCIDENTS	
KEYNOTE PAPER: The 2007 New York City steam explosion: post-accident analysis R S Vecchio, S K Sinha, P M Bruck, T C Esselman, G Zysk, LPI, Inc.; D Somrah, Consolidated Edison Co. of New York, Inc., USA	7
AEROSPACE INDUSTRY	
KEYNOTE PAPER: Multi-phase fluid-hammer in aerospace applications J Steelant, ESA-ESTEC, The Netherlands	21
Effect of the dissolved pressurizing gas on the pressure surge during the filling process of spacecraft feedlines C Bombardieri, T Traudt, C Manfletti, DLR Lampoldshausen, Germany	33
High speed imaging of water hammer with column separation T Traudt, C Bombardieri, C Manfletti, DLR Lampoldshausen, Germany	47
Aircraft refuel rig pressure surge modelling and test verification D Morrison, R Illidge, Airbus Operations Ltd, UK	59
CFD AND UNSTEADY FRICTION	
Computation of steam-water transients using a two-fluid seven-equation model	69
H Lochon, EDF R&D, IMSIA and 12M; F Daude, EDF R&D and IMSIA; P Galon, IMSIA and CEA; J-M Hérard, EDF R&D and 12M, France	
Wall shear stress in unsteady flow analysis using CFD N M C Martins, H M Ramos, D I C Covas, Universidade de Lisboa, Portugal; A K Soares, Federal University de Goiás, Brasil	83
Direct numerical investigation of unsteady turbulent pipe flow Y M Chung, Z Wang, University of Warwick, UK	99
Simple modelling of unsteady friction factor K Urbanowicz, West Pomeranian University of Technology, Poland	113

CODES AND DATABASES

Proposal for an improved approach for the simplified force calculation procedure after rapid valve closure in the European standard EN 13480-3 <i>T Neuhaus, TUEV NORD SysTec GmbH & Co. KG, Germany</i>	133
Water hammer software performance analysis and validation via a web-database	149
S van der Zwan A Heinsbroek M Tukker Deltares The Netherlands:	

S van der Zwan, A Heinsbroek, M Tukker, Deltares, The Netherlands; B Karney, University of Toronto, Canada; A Bergant, Litostroj Power d.o.o., Slovenia

ENTRAPPED AIR

Modeling trapped air pockets in a combined sewage storage tunnel P Klaver, J Wolfe, LimnoTech, USA; D Crawford, Thames Tideway Tunnel Delivery Team, UK; J G Vasconcelos, Auburn University, USA	159
Effective de-aeration of pipelines and the use of captured air to mitigate dynamic pressures <i>S J van Vuuren, University of Pretoria, South Africa</i>	171
Rapid filling of an open-ended pipeline with entrapped air L Zhou, D Liu, H Wang, Hohai University, China; B Karney, A Malekpour, University of Toronto, Canada	185
Exploring how air valves change transient responses of pipe systems during rapid filling A Malekpour, HydraTek & Associate Inc.; B Karney, University of Toronto, Canada	199
Lagrangian modelling of fluid transients in pipelines with entrapped air D Q Hou, S Wang, Tianjin University, China; A C H Kruisbrink, University of Nottingham, UK; A S Tijsseling, Eindhoven University of Technology, The Netherlands	215
Entrapped air pocket analysis using CFD N M C Martins, H M Ramos, D I C Covas, Universidade de Lisboa, Portugal; A K Soares, Federal University of Goias, Brazil	229
Physical explanation of the effect of pipe and liquid elasticity on the transient pressures following rapid pressurization of pipelines with entrapped air A Malekpour, HydraTek & Associates; B Karney, University of Toronto, Canada	239

FLUID-STRUCTURE INTERACTION AND TURBIDITY

Hydraulic transients in straight and coil pipe rigs D Ferras, Universidade de Lisboa, Portugal and École Polytechnique Fédérale de Lausanne, Switzerland; P A Manso, A J Schleiss, École Polytechnique Fédérale de Lausanne, Switzerland; D I C Covas, Universidade de Lisboa, Portugal	257
Interaction between hydraulic transient events and structure vibration	273

Interaction between hydraulic transient events and structure vibration 2 M Simão, H M Ramos, University of Lisbon, Portugal; J Mora-Rodriguez, Universidad de Guanajuato, Mexico

FSI study on the human veins M Simão, J M Ferreira, H M Ramos, University of Lisbon, Portugal; J Mora-Rodriguez, Universidad de Guanajuato, Mexico	287
Do transients contribute to turbidity failures of water distribution systems? S Jones, R Collins, J Boxall, University of Sheffield, UK	297
FUNDAMENTALS	
Work and life of Piotr Szymański K Urbanowicz, West Pomeranian University of Technology, Poland; A S Tijsseling, Eindhoven University of Technology, The Netherlands	311
Method of characteristics: (Why) is it so good? A E Vardy, University of Dundee, UK; A S Tijsseling, Eindhoven University of Technology, The Netherlands	327
What is wave speed? A S Tijsseling, Eindhoven University of Technology, The Netherlands; A E Vardy, University of Dundee, UK	343
On the behaviour of high frequency acoustic waves in pressurized inviscid fluid in a conduit <i>M Louati, M S Ghidaoui, The Hong Kong University of Science and</i> <i>Technology, Hong Kong</i>	361
HYDROPOWER INDUSTRY	
Modelling a transient event at an hydroelectric scheme P J Purcell, University College Dublin, Eire	379
Large and rapid set-point adjustment of hydro power plants using embedded transient hydraulic simulations of the plant as a model predictive method <i>B Svingen, Rainpower Norway AS / NTNU; H H Francke, Flow Design Bureau AS, Norway</i>	391
Numerical study prior to a turbine commissioning test F Sadeque, J Taylor, BC Hydro, Canada	405
Case study: Damaging effects of increasing the installed capacity in an existing hydropower plant K Vereide, B Svingen, Norwegian University of Science and Technology; R Guddal, Sira-Kvina Power Company, Norway	417

Effect of pressure relief valves on the fluid transients in the penstocks of a small run-of-river plant S Dursun, Z Bozkuş, A E Dinçer, METU, Turkey

INDUSTRIAL CASE STUDIES

KEYNOTE PAPER: 439 Analysis and control of hydraulic transients: practical aspects and considerations 439 M H Chaudhry, University of South Carolina, USA 439

Surge alleviation at Wilmslow water treatment works high lift pumping station S Massey, C Robinson, MMI Engineering Ltd; M Bingham, MWH Treatment Ltd; T Dempsey, United Utilities Group PLC, UK	453
Case studies of the design and performance of one-way surge tanks in pumped water and wastewater pipelines B Madin, BSE; R Austin, Innovyze, Australia	463
Controlling pressure transients in large diameter transmission mains with little allowance for surge D H Axworthy, Northwest Hydraulic Consultants Inc., USA	477
Full scale ambient water flow tests of a 10-inch emergency release coupling for LNG transfer J van der Putte, E van Bokhorst, TNO Technical Sciences, The Netherlands; T Webber, C Revell, KLAW LNG, UK	493
Use of pressure surge for unblocking hydrocarbon pipelines H Mackenzie, R Campbell, Paradigm Flow Services; A E Vardy, University of Dundee, UK	509
Air valves/vacuum breakers; a modelling nightmare P Glover, Peter Glover Consulting Ltd, UK	523
Anatomy of surge analysis for industrial firewater systems — "we never have problems with firewater systems!" L C Ireland, F A Locher, Bechtel NS&E J D O'Sullivan, S Koirala, Bechtel Oil Gas & Chemicals, USA	537
Pressure surges with "zero flow" in a fire fighting reticulation system A Heinsbroek, Deltares, The Netherlands; B Karney, University of Toronto, Canada	549
Integration of emergency control systems in the anti-surge design of large transmission schemes S van der Zwan, Deltares; A Alidai, I W M Pothof, Deltares and Delft University of Technology, The Netherlands; P H Leruth, Abu Dhabi Transmission & Despatch Company (TRANSCO), UAE	557
Efficient assessment of transmission mains and control systems by means of numerical modelling L Mecksenaar, S H Balkema, Royal HaskoningDHV; E Arpadzic, E Vermaas, Evides Water Company, The Netherlands	567
LEAK DETECTION, MONITORING AND EXPERIMENTS	
The use of the cross-correlation of two signals as a transient leak detection method	581

N Motazedi, S B M Beck, University of Sheffield, UK

Field study on pipeline parameter identification using fluid transient waves595with time-domain analysisJ Gong, Y Kim, M Lambert, A Simpson, A Zecchin, The University ofAdelaide; H Fandrich, East Gippsland Water, Australia

A method to characterise transients from pressure signals recorded in real water distribution networks D Starczewska, R Collins, J Boxall, University of Sheffield, UK	609
Experimental and analytical study of the air-water interface kinematics during filling and emptying of a horizontal pipeline J Laanearu, Tallinn University of Technology, Estonia; D Q Hou, Tianjin University, China; A S Tijsseling, Eindhoven University of Technology, The Netherlands	625
Developments in valve-induced water-hammer experimentation in a small-scale pipeline apparatus A Bergant, Litostroj Power d.o.o., Slovenia; U Karadžić, University of Montenegro, Montenegro	639

MULTI-PHASE TRANSIENTS

KEYNOTE PAPER: State-of-the-art modelling of multi-phase transients <i>I Tiselj, Jožef Stefan Institute, Slovenia</i>	655
KEYNOTE PAPER: Surges associated with rapid filling of stormwater tunnels and transmission mains – An overview of the existing research <i>J G Vasconcelos, Auburn University, USA</i>	681

PUMPS, VALVES AND VESSELS

-	
In Situ Determination of polar moment of inertia of pump-motor assembly C S Martin, Georgia Institute of Technology, USA	703
Thermodynamics of surge vessels S van der Zwan, Deltares; M Toussaint, Delft University of Technology; A Alidai, I W M Pothof, Deltares and Delft University of Technology, The Netherlands; P H Leruth, Abu Dhabi Transmission & Despatch Company (TRANSCO), UAE	713
Theoretical and experimental analysis of pressure surge in a two-phase compressed air vessel M Besharat, Islamic Azad University, Iran and Universidade de Lisboa, Portugal; H M Ramos, Universidade de Lisboa, Portugal	729
Hydraulic design and modelling of large surge tanks W Richter, G Zenz, Graz University of Technology, Austria; K Vereide, Norwegian University of Science and Technology, Norway	745
The crucial role of air vacuum valve vertical position on producing secondary transient pressures L Ramezani, B Karney, University of Toronto, Canada	761
Transient flow inside vortex chamber diodes F Haakh, Zweckverband Landeswasserversorgung, Germany	775

AUTHOR INDEX