Abu Dhabi, United Arab Emirates 10-13 April 2016

Pages 1-607

IEEE Catalog Number: ISBN: CFP16EDU-POD 978-1-4673-8634-0

Copyright © 2016 by the Institute of Electrical and Electronics Engineers, Inc All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

***This publication is a representation of what appears in the IEEE Digital Libraries. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP16EDU-POD
ISBN (Print-On-Demand):	978-1-4673-8634-0
ISBN (Online):	978-1-4673-8633-3
ISSN:	2165-9559

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

Table of Contents

Title	Page rang
Learning Outcomes and Assessments Mapping Quality: Make it a Function	1-
Remotely Operated Flight Immersion Laboratory	6–1
How to Handle Large Classrooms of Engineering Students: Sharing Experiences with Applying Three Methods/Practices Including Evaluation Result	is and 11-1
Teaching Programming Basics for First Year non-IT Students	15–1
Development Of A Competitive And Collaborative Platform For Block Diagram And Resistive Circuit Reduction In A Basic Electrical Engineering Cou	rse 20-2
The advantages of 3D printing in undergraduate Mechanical Engineering research	25–3
nvestigating Students' Behavior and Code Quality when Applying Pair-Programming as a Teaching Technique in a Middle Eastern Society	32–3
Effective use of learning management systems still promote student engagement!	40-4
The Computing Professional Skills Assessment. An Innovate Method for Assessing ABET's Student Outcomes	45–5
Benefits and Limitations of Social Network Sites for Engineering Education – a Review Study	53–5
investigating the Reasons for Choosing a Major among the Engineering Students in Qatar	57–6
Competition Oriented Learning Experience in Electronics: Robot fabrication from scratch	62–6
Arduino - Enabling engineering students to obtain academic success in a design-based module	66–7
Samifying the Learning of Design Patterns in Software Engineering Education	74–7
Development of a Tele-Operative control for the incremental tube forming process and its integration into a learning environment	80–8
Review Design of Concrete Structures: Evaluating Learning Effectiveness	87–9
Assessment of Individual Students in Group Work in Engineering Programs	93–9
Sharpening the Educational Toolset - Promoting Professional Developement of University Lecturers	100–10
Educational Reconstruction as model for the theory-based design of student- centered learning environments in Electrical Engineering courses	105–11
oT Design Course using Open-Source Tools	114–11
Industrial Test Project Oriented Education	119–12
Fostering STEM+ Education Improve Design thinking Skills.	125-12
Generic Remote Labs in Automation Engineering	130–13
nternationalization as a topic in higher engineering education - A quantitative content analysis examining the engineering curricula from ten German	technical 136-14
Virtual Worlds and Human-Robot-Teams in Engineering Education - Empirical Studies towards a new educational age	142–14
Code to learn with Scratch? A systematic literature review	150–15
eCARus – Analysis of an established student hands-on project	157–16

2016 IEEE Global Engineering Education Conference (EDUCON)

Table of Contents

Title	Page range
Motivating Students through Problem-based Learning and Chip-Fabrication in a Microelectronics Design Laboratory	163–17
Engineering Programs Accreditation in Russia: an Academic View	171–174
Enhance Embedded System E-learning Experience with Sensors	175–18
An e-Learning Mobile System to Generate Illustrations for Arabic Text	184–19
Learning styles and acievement of engineering students	192–19
Training of Technical Teachers in India: A Case of NITTTR	197–20
Simple and Accurate Student Outcomes Assessment: A Unified Approach using Senior Computer Engineering Design Experiences	204-21
Hypermedia-Based Tutoring. Methodology for the production of hypermedia resources through face-to-face tutoring	212-21
An NFC-Based Method for Rapid Identification of Teaching Resources	219-22
Preparing Engineering Students for the Global Sourcing Environment	224-22
Plexlearning: A Technology-Rich and Systemic Solution to Bloom's Two Sigma Problem	228-23
Flipping Introductory Engineering Design Courses: Evaluating Their Effectiveness	234-23
Remote Experimentation Using a Smartphone Application with Haptic Feedback	240-24
Mapping Information Systems Student Skills to Industry Skills Framework	248-25
MyCompetencies: Competency Tracking Mobile Application for IS Students	254-26
A Framework for Learning Analytics in Moodle for Assessing Course Outcomes	261-26
Use of Body Knowledge and Cloud Computing Tools to develop software projects based in Innovation.	267-27
Virtualization based Ethical Educational Platform for Hands-on Lab Activities on DoS Attacks	273-28
Online PID Control of Tank Level System	281-28
Appliance Of Informational And Technical Means In Carrying Out Project Activities By Students	285-29
Fostering Engineering Students Engagement Using Problem-Based Learning and Course Learner Agent Object Portfolios	291-294
Impact of tablet based learning on continuous assessment (ESPRIT Smart School Framework)	295-30
Learning English through project-based learning: the Case of Engineering Education	301-30
Applying Ontologies in an Educational Context	304-30
Design and development of a responsive web application based on scaffolding learning	308-31
CodeOcean - A Versatile Platform for Practical Programming Excercises in Online Environments	314-32
Pioneering STEM Education: A Course for Pre-Service Teachers	324-33

Table of Contents

Title Table of Contents	Page range
Design-Based Educational Strategies for Training on Microelectronics: Features and Results	332–339
Integrated Development of Technical and Base Competencies	340-348
Curriculum Reorganization and Course Collaboration in Computer Science	349-354
Implementation of E-learning in an Electrical Engineering Study Program - Infrastructure, Experience, and Lessons Learned	355-360
Undergraduate Mechanical Engineering Design Courses at the University of Johannesburg	361-368
A Presentation Framework for Programming in Programing Lectures	369-374
Enhancing the EDUCache Simulator with Visualization of Cache Performance	375–382
Using App Inventor 2 in a Summer Programming Workshop: Improvements over Previous Years	383–388
Innovation, Design and Entrepreneurship for Engineering Students	389-396
Is the Computer Science Curriculum Ready to Teach Students Towards Hardwarizing?	397-402
Teaching Fundamental Concepts In Rootics Technology Using Matlab Toolboxes	403-408
From Face-to-Face to Blended Learning using ICT	409-41
Learning Programming Languages through Input-Providing Tasks	419-424
Learning Styles Module as a Part of a Virtual Campus	425-433
Dual Study - A Smart Merger of Vocational and Higher Education	434-437
Developing an Interactive Patent Searching Instruction Module at an American University in the UAE	438-442
Impact of Smart Immersive Mobile Learning in Language Literacy Education	443-447
Applying a methodology for the design, delivery and evaluation of learning resources for remote experimentation	448-454
Aligning Learning Objectives and Exams	455-462
Innovative Agile Project Management Curriculum for Engineering Education	463-468
Remote Labs in ELLI: Lab Experience for Every Student with Two Different Approaches	469-475
Towards Smart Engineering Education: The Ontology of Internet-of-Things Applications	476-48
Assessment and development of transversal competencies based on student's autonomous learning	482-487
Support Peer Assessment Processes in Online Problem-based Learning	488-49
A Comparison Between Students Behavior and Performance During Regular and Intensive Engineering Courses with and without Laboratory Time	498-502
Multi Dimensional View of the Graves Value Systems Model on Teaching and Learning Leading to a Students-Centered Learning	503-51
Using Software Metrics to Predict the Difficulty of Code Writing Questions	513-518

2016 IEEE Global Engineering Education Conference (EDUCON)

Table of Contents

Title	Page range
ABS Controller: An Introductory Case Study for Motivating Non-Major Students	519–526
Evaluating Didactical Approaches Based upon Students' Competences	527–536
Engineering and Arts in Robotics Projects at Universities: Pontificia Universidad Catolica del Peru a	as a Case Study 537–544
A Concept for Interventions that Address Typical Error Classes in Programming Education	545–554
Integration of new concepts and features into forming technology lectures	555–562
ESPRIT-SOCIAL NETWORK : An internal collaborative platform for the student of ESPRIT	563–567
Students' Perception of Remote Laboratories - Case Study: NetLab	568–575
An Experimental Card Game for Software Testing	576–584
Improving Programming Skills using Computer based Feedback and Peer Group Competition	585–591
Strengthening Study Skills by using ERPsim as a new tool within the Pupils' Academy of Serious G	aming 592-601
Concepts of the International Manufacturing Remote Lab (MINTReLab)	602–607
Comparative usability evaluation of three popular MOOC platforms	608–612
Developing Visual Expertise in Software Engineering	613–620
Training master students to program both virtual and real autonomous robots in a teaching laborate	ry 621–630
Development of an Eclipse Plugin for using the LEGO Mindstorms EV3 in Education	631–636
Motivation for developing a qualitative methodological basis for the analysis of historical curriculum	changes. 637-644
Conception of online-supported learning system for collective and self-organized learning	645–651
Research Approach to Analyse and Foster Discipline-Specific Language Competency in Software B	Engineering Education 652–659
Cognitive Technology for Children with Hearing	660–667
Key Competences of Computer Science Professionals	668–674
An analysis of cloud computing utilization in a university's environment	675–679
Computing as a New Compulsory Subject in the Macedonian Primary Schools Curriculum	680–685
Improving the Accuracy of the Code Complexity Calculation for Automatically Generated Tasks with	n Programming Codes 686–692
First steps to active learning for training engineers	693–696
Integration of the Model Based Design – Industrial Approach - for Teaching Engineering Science	697–701
The Development of Postgraduate ICT Programmes - for an Industry that does not want traditional	Postgraduate Students 702–708
NLAST: A natural language assistant for students	709–713

Customized Learning

Title

Epistemic Fidelity and Cognitive Constructivism in DLD-VISU

Smart Education in Electrical Engineering with S.m.i.L.E-mobile

Teacher Perceptions of Training and Intention to Use Robotics

QuizMonitor: a learning platform that leverages student monitoring

Improving Programming Education through Gameful, Formative Feedback

Technological readiness and higher education in the Czech Republic

A Didactic Electronic Set-up for Introducing to Complex Networks of Chaotic Oscillators

Semantic similarity based evaluation for C programs through the use of symbolic execution

Financial and economics subjects, utilization of LMS Blackboard and results from examination

AIR-EDUTECH: Augmented Immersive Reality (AIR) Technology for High School Chemistry Education

Impact of Simulation Softwares as Teaching Tools in Engineering Learning – An Instructional Design Choice

Supporting Information Literacy development of undergraduate Engineering students in research-based composition courses

Title Table of Contents	
Establishment of Industrial Control Laboratory for Undergraduate and Postgraduate Curricula	
Design of an ECUK Framework for Conducting Capstone Projects	
Attracting Female Engineering Students: Insights from Malaysia and Kazakhstan	
Engineering Students' Perception of Academic Dishonesty at an American University in the UAE	
Enabling MOOL in Acoustics by Mobile Crowd-Sensing Paradigm	
MyVision AIR : An Augmented Interactive Reality Book	
How Course Projects can Successfully Prepare Engineering Students for Capstone Design Projects	
Introducing Microprocessor-Based Systems Design on an ARM Softcore using a FPGA and a Teaching Auxiliary Board	
Engineering Practice- a Junior Level Course to Develop the "SOFT SKILLS" in Engineering	
A Means for Visualization of Experimental Skills	
The stochastic model of the impact of context factors to educational results of Tomsk school graduates	
Designing a Resilience Module in an Introductory Engineering Design Course for Freshmen	
Exploring Students' Performace within a Digital Literacy Course	

Page range

714–718

719–723

724–728

729–732

733–740

741–745

746–750

751-756

757–760

761-766

767–771

772–779

780-784

785–793

794–797

798-801

802-807 808-817

818-825

826-833

834-841 842-847

848-853

854-859 860-867

868-873 874-882

Page range

2016 IEEE Global Engineering Education Conference (EDUCON)

A contribution to encourage the dissemination of academic publishing. Finding diffusion media by means of a search engine based on semantic technologies

Table of Contents

nue	Page fallge
Towards an innovative Computer Science curriculum in UAE public schools system	883–891
An Information Technology Competency Model and Curriculum	892-895
Study of Engineering Related to Problems of Cities in Research Laboratories in a Higher Education Institution in a Peripheral City of Brazil	896-904
Edutronics: gamification for introducing kids to electronics	905–908
A Potential Theoretical Method for Exploring the Engineering First Year Retention Problem	909-916
Case-based Exams for Learning and Assessment: Experiences in an Information Systems Course	917-923
Case Exams for Assessing Higher Order Learning: A Comparative Social Media Analytics Usage Exam	924-928
On the Predictive Power of University Curricula	929–932
Educational Data Mining That Supports Quality Teaching	933–940
Attracting Students to STEM: Obstructors and Facilitators	941–950
Overcoming the Challenges in K-12 STEM Education	951-960
A case study on student-centered problem solving processes in secondary school computer science education	961-967
Students Perception on the Use of Social Media to Learn English within Secondary Education in Developing Countries	968-973
Cloud-based learning: A study on rapid learning content development with an Agile method	974–979
Work in Progress - REMOTE EXPERIMENT AND VIRTUAL SENSORS	980–983
Work in progress: On the improvement of STEM education from preschool to elementary school	984–987
Work-in-Progress: Integrating a Remote Laboratory System in an Online Learning Environment	988-991
Introducing Human Computer Interaction: A Didactical Experience	992–996
Work in Progress, the Impact of using ICTs for Sustainable Communication in Cases of Special Need Children: An early research case study	997-1002
Collaboration and Human Factors in Software Development - Teaching Agile Methodologies based on Industrial Insight	1003-1011
Influence of Flipped Classroom on Technical Skills and Non-Technical Competences of IT Students	1012-1016
Teaching Product Design in Line with Bloom's Taxonomy and ABET Student Outcomes	1017-1022
Ranking Task Activity in Teaching Software Engineering	1023-1027
Software-Aided Robotics Education and Design	1028-1033
E-learning platform Evaluation by using CoALa	1034-1039
Comparing Computational Thinking Development Assessment Scores with Software Complexity Metrics	1040-1045
Experimental Training in Engineering	1046-1050

T	C	<u> </u>
Iahle	$\cap t$	Contents
TUDIC	UI.	CONCINS

Title

Title	Page range
Robotic Rescue Simulation for Engineering Teaching in the UK: A Case Study	1051-1055
Using Input Output Leontief Model in Higher Education Based on Knowledge Engineering and Fuzzy Logic	1056–1064
Work In Progress: New Education Model Based on Competencies of Higher Education and iMIS With Architectures	1065-1070
Teaching Academics' Self-efficacy in Curriculum Change	1071–1076
Fully-Automated Electronic Mock Examination in an Introductory Computer Science Course	1077–1086
Impact of Instruction on Binary Multipliers using Simulink to improve Cognitive ability	1087–1091
Designing a Product Development Process Graduate Course: An Interdisciplinary Example	1092-1095
Towards a Framework for Mining Students' Programming Assignments	1096-1100
Proposal of cloud-based online laboratory model for practical training in the telecoms and networking fields	1101-1105
Massive Online Open Course (MOOC) in China: Status quo, Opportunites, and Chanllenges	1106-1108
Implementation of Bridge Modeling Competition in Evaluating Students Competency	1109-1114
Computer Science MOOCs: a Methodology for the Recording of Videos	1115-112
From Software Engineering to Courseware Engineering	1122-1128
An Approach to Gamify an Adaptive Questionnaire Environment	1129-1133
Designing virtual world educational applications	1134-1137
A Cost-Effective Computer Supported Collaborative Learning for Online Education	1138–1144
Systematic Integration of MATLAB into Undergraduate Mathematics Teaching Preliminary Lessons from Two UK Insititutions	1145–1148
Intelligent systems to support the active self-learning in industrial automation	1149-1154
Proposal of a methodology of serious games' demystification for the teaching of techniques modules	1155-1159
Work in Progress: Improving Communication Skills of Engineering Students by Employing Texts such as Fairy Tales	1160-1163
Course Periodic Behavior Modelling and Its Application in LMS Activity Prediction	1164–1174
Work in progress: Automatic Observation of Student's Metacognition by Using Clustering Technique	1175-1178
Integrating OER in the design of educational material	1179-118
Tools and Approaches for Simplifying Serious Games Development in Educational Settings	1188-1197
Investigating the Employment Gap: What Employers Want from Engineering Graduates	1198–120
Programme Outcomes Year III Student through Integrated Project and Open Ended Laboratory	1202-1206
A Methodology for identifying attributes of academic excellence based on a 20/80 Pareto distribution	1207-121

2016 IEEE Global Engineering Education Conference (EDUCON)

Table of Contents

Page range The Jigsaw Technique to Teach Object-Oriented Design: A Replication Study with Graduate Students 1212-1217 1218–1220 1221–1224 Designing Educational Material What engineering students tell us about to know mathematics and statistics in their courses?