2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC 2016)

Edinburgh, United Kingdom 3-6 July 2016

Pages 1-489

IEEE Catalog Number: ISBN:

CFP16AWC-POD 978-1-5090-1750-8

Copyright © 2016 by the Institute of Electrical and Electronics Engineers, Inc All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

***This publication is a representation of what appears in the IEEE Digital Libraries. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number: CFP16AWC-POD ISBN (Print-On-Demand): 978-1-5090-1750-8 ISBN (Online): 978-1-5090-1749-2

ISSN: 1948-3244

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

Table of Contents

2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

Full-duplex	/mm-wave	Commi	unications
--------------------	----------	-------	------------

R1.1	User Scheduling and Optimal Power Allocation for Full-Duplex Cellular Networks1
	George C. Alexandropoulos; Marios Kountouris; Italo Atzeni
R1.2	Transceiver design of Optimum wirelessly powered Full-Duplex MIMO Interference Channel7
	Ali Cagatay Cirik; Jiang Xue; Sudip Biswas; Tharmalingam Ratnarajah; Mathini Sellathurai
R1.3	Beamforming Optimization for Full-Duplex Cooperative Cognitive Radio Networks13
	Shiyang Hu; Zhiguo Ding; Qiang Ni; Yi Yuan
R1.4	Bandwidth Allocation in Partial Duplex Relaying18 Carlos Mosquera; Roberto López-Valcarce
R1.5	Practical Multi-User Transmission Design in Millimeter Wave Cellular Networks: Is Joint SDMA-TDMA Technique the Answer?23 Pan Cao; John Thompson
R1.6	Communication with 1-Bit Quantization and Oversampling at the Receiver: Spectral Constrained Waveform Optimization28 Sandra Bender; Lukas Landau; Meik Dörpinghaus; Gerhard Fettweis
R1.7	Graph-based Power-Efficient Beam Sweep for Initial Synchronization33 Igor M Guerreiro; Johan Axnäs; Dennis Hui; Charles Casimiro Cavalcante

Resource Allocation and Scheduling in Multiuser Networks

R2.1	Scheduling in Uplink Cellular Networks38 Kaiming Shen; Wei Yu
R2.2	Potential Field Based Scheduling in Cognitive Radio Networks43 Henri Hentilä; Jan Oksanen; Visa Koivunen
R2.3	Information-theoretic multi-user power adaptation in retransmission schemes49 Romain Tajan; Philippe Ciblat
R2.4	Optimal and Suboptimal Routing for Wideband Ad-hoc Networks54 Yiftach Richter; Itsik Bergel
R2. 5	Multiple Access Computational Offloading59 Mahsa Salmani; Timothy N. Davidson
R2.6	DoF Region for Two-cell Multiuser MIMO Uplink Channels65 Jiayi Chen
R2.7	A Rate-Splitting Strategy for Max-Min Fair Multigroup Multicasting71 Hamdi Joudeh; Bruno Clerckx
R2.8	Joint Compression and Feedback of CSI in Correlated Multiuser MISO Channels76 Maha Alodeh; Symeon Chatzinotas; Björn Ottersten

Underwater Acoustic Communications

S1.1	Distributed Power Allocation Strategy in Shallow Water Acoustic Interference Channels82 Antony Pottier; Francois-Xavier Socheleau; Christophe Laot
S1.2	Reliable Communication using Packet Coding for Underwater Acoustic Channels87 Rameez Ahmed; Milica Stojanovic
S1.3	Mbps Experimental Acoustic Through-Tissue Communications: MEAT-COMMS92 Andrew C. Singer; Michael Oelze; Anthony S. Podkowa
S1.4	Detection and Time-of-Arrival Estimation of Underwater Acoustic Signals96 Roee Diamant; Ryan Kastner; Michele Zorzi
S1.5	Asymptotically Tight Capacity Bounds for Parametric Underwater Communications101 Karsten Wiedmann; Tobias Weber
S1.6	Joint Sparse Channel Estimation and Data Detection for Underwater Acoustic Channels Using Partial Interval Demodulation106 Arunkumar KP; Chandra R Murthy; Venkatesh Elango

Physical Layer Security for 5G

S2.1	Secure Multicast Communications with Private Jammers112 Kanapathippillai Cumanan; Zhiguo Ding; Mai Xu; H. Vincent Poor
S2.2	Experimental Study on Channel Reciprocity in Wireless Key Generation118 Junqing Zhang; Roger Woods; Trung Q. Duong; Alan Marshall; Yuan Ding
S2.3	Physical Layer Security for Massive MIMO Systems Impaired by Phase Noise123 Jun Zhu; Robert Schober; Vijay Bhargava
\$2.4	Artificial-Noise-Assisted Energy-Efficient Secure Transmission in 5G with Imperfect CSIT and Antenna Correlation128 Alessio Zappone; Pin-Hsun Lin; Eduard Jorswieck
S2.5	Optimal Cooperative Range of Distributed Transmitters for Communications Secrecy133 Jue Wang; Jemin Lee; Tony Q. S. Quek
S2.6	Overcoming Limitations of Secret Key Generation in Block Fading Channels Under Active Attacks138 Arsenia Chorti

S3.1	Mobile Molecular Communications: Positional-Distance Codes143 Song Qiu; A. Taufiq Asyhari; Weisi Guo
S3.2	Leader-follower Based Target Detection Model for Mobile Molecular Communication Networks148 Tadashi Nakano; Shouhei Kobayashi; Takako Koujin; Chen-Hao Chan; Shawn Hsu; Yutaka Okaie; Takuya Obuchi; Takahiro Hara; Yasushi Hiraoka; Tokuko Haraguchi
S3.3	Micro-RNA Profile Detection via Factor Graphs153 Arash Einolghozati; Jun Zou; Afshin Abdi; Faramarz Fekri
S3.4	A Novel Molecular Communication System Using Acids, Bases and Hydrogen Ions158 Nariman Farsad; Andrea Goldsmith
S3.5	Mutual Information Upper Bound of Molecular Communication Based on Cell Metabolism164 Massimiliano Pierobon; Zahmeeth Sakkaff
S3.6	Ion Pump Based Bio-Synthetic Modulator Model for Diffusive Molecular Communications170 Hamidreza Arjmandi; Vahid Jamali; Arman Ahmadzadeh; Andreas Burkovski; Robert Schober; Masoumeh Nasiri-Kenari

Energy Harvesting	/ Green	Wireless	Communications
--------------------------	---------	----------	-----------------------

R3.1	Energy Harvesting Enabled MIMO Relaying Through Power Splitting176 Jialing Liao; Muhammad R. A. Khandaker; Kai-Kit Wong
R3.2	Joint Multi-objective Transmit Precoding and Receiver Time Switching Design for MISO SWIPT Systems181 Nafiseh Janatian; Ivan Stupia; Luc Vandendorpe
R3.3	Secrecy Rate Maximization for MISO Multicasting SWIPT System with Power Splitting Scheme186 Miao Zhang; Kanapathippillai Cumanan; Alister G. Burr
R3.4	A Hybrid Spectrum Sharing Protocol for Energy Harvesting Wireless Sensor Nodes191 Mansi Peer; Neha Jain; Vivek A Bohara
R3.5	Throughput Performance of an Energy-Efficient Protocol for Two-Hop Cognitive Networks with Energy Harvesting Relays197 Komal Janghel; Shankar Prakriya
R3.6	Energy Efficient Resource Allocation in MIMO-OFDMA Downlink Systems202 Zijian Wang; Luc Vandendorpe
R3.7	Optimum Energy Allocation for Massive Spread-Spectrum Multiple Access in Networks of Uncoordinated Energy-Limited Terminals207 Javier Villares; Francesc Rey; Josep Sala

Detection, Estimation and Fil	tering in	Sensor/	Wireless	Networks
--------------------------------------	-----------	---------	-----------------	----------

R4.1	Optimal Cost Allocation in Centralized and Decentralized Detection Problems213 Eray Laz; Sinan Gezici
R4.2	Carrier Frequency Offset Estimation for Linear Channels with Periodic Characteristics218 Roee Shaked; Nir Shlezinger; Ron Dabora
R4.3	Generalized Optimal Pilot Allocation for Channel Estimation in Multicarrier Systems223 François Rottenberg; François Horlin; Eleftherios Kofidis; Jerome Louveaux
R4.4	A Semi-Widely Linear Filtering Algorithm for C-Proper Quaternion Based on Randomly Modeled Observations228 Jose Jiménez-López; Rosa M. Fernández-Alcalá; J. Navarro-Moreno; Ruiz-Molina
R4.5	Multi-Stream Distributed Co-Phasing: Design and Analysis233 Ribhu Chopra; Chandra R Murthy; Ramesh Annavajjala
R4.6	Near Optimal Representative Subset Selection from Short SequencesGenerated by a Stationary Source239 Ali Payani; Afshin Abdi; Faramarz Fekri
R4.7	Diffusion-based EM Gradient Algorithm for Density Estimation in Sensor Networks244 Jia Yu; John Thompson
R4.8	Distributed Average Consensus With Bounded Quantization249 Shengyu Zhu; Biao Chen

5G Technologies for D2D, M2M and V2V Communications

S4.1	Location-Aided mm-Wave Channel Estimation for Vehicular Communication255 Nil Garcia; Henk Wymeersch; Erik G Ström; Dirk Slock
\$4.2	Optimal Geographic Caching in Finite Wireless Networks260 Mehrnaz Afshang; Harpreet S Dhillon
\$4.3	Latency Analysis of Systems with Multiple Interfaces for Ultra-Reliable M2M Communication265 Jimmy J Nielsen; Petar Popovski
S4.4	Computing Resource Constraint in Wireless M2M Communications271 Yun Liao; Lingyang Song
S4.5	Downlink Coverage Probability in a Finite Network of Unmanned Aerial Vehicle (UAV) Base Stations277 Vishnu Vardhan Chetlur Ravi: Harpreet S Dhillon

Signal Processing for Wireless Powered Communications

S5.1	Robust Beamforming for SWIPT Systems with Non-linear Energy Harvesting Model282
	Elena Boshkovska; Alexander Koelpin; Derrick Wing Kwan Ng; Nikola Zlatanov; Robert Schober
S5.2	The Application of Non-orthogonal Multiple Access in Wireless Powered Communication Networks287 Yi Yuan; Zhiguo Ding
S5.3	Adaptive harvest-then-cooperate: delay-aware wireless powered communication networks292 Qizhong Yao; Aiping Huang; Hangguan Shan; Tony Q. S. Quek; Wei Wang
S5.4	Waveform Optimization for Large-Scale Multi-Antenna Multi-Sine Wireless Power Transfer297 Yang Huang; Bruno Clerckx
S5.5	Wireless Powered Large-Scale Multi-Antenna AF Relaying for Cooperative Jamming-Aided Secrecy302 Hong Xing: Yansha Deng: Kai Kit Wong: Arumugam Nallanathan

Big Data Signal Processing in Communications and Networking

S6.1	A Fast Approximation Algorithm for Single-Group Multicast Beamforming with Large Antenna Arrays307 Aritra Konar; Nicholas Sidiropoulos
S6.2	A Topological Collapse for Document Summarization312 Hui Guan; Wen Tang; Hamid Krim; James Keiser; Andrew J Rindos; Radmila Sazdanovic
S6.3	Detection and mitigation of jamming attacks in massive MIMO systems using random matrix theory317 Julia Vinogradova; Emil Björnson; Erik G. Larsson
S6.4	Scalable Graph Signal Recovery for Big Data Over Networks322 Alexander Jung; Peter Berger; Gabor Hannak; Gerald Matz
S6.5	Element-based Lattice Reduction aided K-Best detector for large-scale MIMO systems328 Ogeen Toma; Mohammed El-Hajjar
S6.6	A Low-Complexity Precoding Scheme for Two-User Massive MIMO Downlink333 Xihui Liu; Yindi Jing

D2D and Heterogeneous Networks

R5.1	Device-to-Device Communications in LTE-Unlicensed Heterogeneous Network339 Hu Yuan; Weisi Guo; Siyi Wang
R5.2	Performance Analysis of Coordination Strategies in Two-Tier Heterogeneous Networks344 Ikram Boukhedimi; Abla Kammoun; Mohamed-Slim Alouini
R5.3	D2D Caching vs. Small Cell Caching: Where to Cache Content in a Wireless Network?350 Zheng Chen; Marios Kountouris
R5.4	Energy Efficiency-Area Spectral Efficiency Tradeoff in PPP Network with SLNR Precoder356 Ahmad Mahbubul Alam; Philippe Mary; Jean-Yves Baudais; Xavier Lagrange
R5.5	Artificial Neural Network Aided Dynamic Scheduling for eICIC in LTE HetNets362

Huijun Li; Zekai Liang; Gerd H. Ascheid

R6.1	Relay Selection for Asynchronous AF Relay Networks with Frequency Selective Channels367 Mahmoud Alageli; Aissa Ikhlef; Jonathon Chambers
R6.2	Semi-Orthogonal MARC with half duplex relaying: A Backward Compatible Cooperative Network with Interference Channels372 Mohieddine El Soussi; Thang Xuan Vu; Nguyen Hong Nhat; Pierre Duhamel; Florence Alberge; Luc Vandendorpe
R6.3	Energy-Efficient Double Relay Communication Protocol in Cellular Networks377 Rodolfo Torrea-Duran; Fernando Rosas; Sofie Pollin; Luc Vandendorpe; Marc Moonen
R6.4	An Iterative Re-Weighted Minimization Framework for Resource Allocation in the Single-Cell Relay-Enhanced OFDMA Network382 Chethan Kumar, A; Chandra R Murthy
R6.5	Low-Complexity Cooperative Relay Beamforming for Multi-Cluster Relay Interference Networks388 Zilong Yang; Min Dong
R6.6	Performance Analysis of MRC/MRT Relaying in Massive MIMO Systems via Interference Modelling394 Qian Wang; Yindi Jing
R6.7	MIMO Cooperative Cognitive Radio Relay Networks with Uniquely- Factorable Constellation Pair400 Gangtao Han; Jian-Kang Zhang; Xiaomin Mu, Xinying Guo

Cooperative Cellular Networks with Backhaul Constraints

S7.1	Stochastic Analysis of User-Centric Network MIMO405 Caiyi Zhu; Wei Yu
S7.2	Cloud RAN and Edge Caching: Fundamental Performance Trade-Offs410 Avik Sengupta; Ravi Tandon; Osvaldo Simeone
S7.3	Joint Resource Segmentation and Transmission Rate Adaptation in Cloud RAN with Caching as a Service415 Jianhua Tang; Tony Q. S. Quek; Wee Peng Tay
S7.4	Cloud-Based Topological Interference Management: A Case with No Cooperative Transmission Gain421 Aly El Gamal
S7.5	Sum Rate Maximizing Joint Processing with Limited Backhaul and Tree Topology Constraints427 Jarkko Kaleva; Meghana Bande; Antti Tölli; Markku Juntti; Venugopal Veeravalli
\$7.6	Elevated multiplexing and signal space partitioning in the 2 user MIMO IC with partial CSIT432 Bofeng Yuan; Syed Ali Jafar

Heterogeneous Networks for 5G

S8.1	Optimal Probabilistic Caching with Wireless Caching Helpers438 Seong Ho Chae; Wan Choi
\$8.2	Duopoly Competition Between Small Cell Operators with Large Scale Deployments443 Stelios Stefanatos; Angeliki Alexiou
\$8.3	On the Delay of Geographical Caching Methods in Two-Tiered Heterogeneous Networks448 Ejder Baştuğ; Marios Kountouris; Mehdi Bennis; Mérouane Debbah
\$8.4	Handover Mechanism and Performance Evaluation for LTE-LAA systems453 Ran Tao; Long Li; Xiaoli Chu; Jie Zhang
\$8.5	Cloud Radio Access meets Heterogeneous Small Cell Networks: A Cognitive Hierarchy Perspective458 Nof Abuzainab; Walid Saad
\$8.6	Pulse Shaping Diversity to Enhance Throughput in Ultra-Dense Small Cell Networks463 Amir H Jafari; Vijay Venkateswaran; David López-Pérez; Jie Zhang

Licensed Shared Access

\$9.1	Optimal Sensing and Power Allocation in Pilot-Aided Shared Access Systems: A BER Minimization Approach468 George A Ropokis; Miltiades C. Filippou; Athanasios A. Rontogiannis; Luiz DaSilva; Nicola Marchetti; Valerio Frascolla; P. Takis Mathiopoulos
\$9.2	Realizing Spectrum Sharing through the use of a Database-Assisted MAC protocol474 Konstantinos Voulgaris; Bobby Gizas; Constantinos B. Papadias
\$9.3	MIMO OFDM Capacity Maximizing Beamforming for Large Doppler Scenarios478 Kalyana Gopala; Dirk Slock
\$9.4	Improved Link Adaptation with Coordinated Scheduling in non-Fully Loaded Wireless Networks484 Oscar Dario Ramos-Cantor; Jakob Belschner; Marius Pesavento
\$9.5	On the Spectral Coexistence of Colocated MIMO Radars and Wireless Communications Systems490 Ebtihal H. G. Yousif; Faheem A. Khan; Tharmalingam Ratnarajah; Mathin Sellathurai
\$9.6	Optimizing Access Mechanisms for QoS Provisioning in Hardware Constrained Dynamic Spectrum Access495 Spyridon Vassilaras; George C. Alexandropoulos

Massive MIMO Communications

R7.1	Design and Analysis of a Reduced Complexity MRC V-BLAST Receiver for Massive MIMO501
	Khawla Alnajjar; Peter J Smith; Graeme K Woodward; Dushyantha Basnayaka
R7.2	Joint User Grouping and Beamforming for Low Complexity Massive MIMO Systems506 Junting Chen; David Gesbert
R7.3	Frequency-Domain Interpolation of the Zero-Forcing Matrix in Massive MIMO-OFDM512 Salil Kashyap; Christopher Mollén; Emil Björnson; Erik G. Larsson
R7.4	Beamforming Training in TDD MU-Massive-MIMO with Optimal Transmission Interval517 Kaifeng Guo; Sida Dai; Behnam Khodapanah; Gerd H. Ascheid
R7.5	On Ergodic Rates and Optimal Array Geometry in Line-of-Sight Massive MIMO522 Prabhu Chandhar; Danyo Danev; Erik G. Larsson
R7.6	Max-Min SINR Low Complexity Transceiver Design for Single Cell Massive MIMO528 Houssem Sifaou; Abla Kammoun; Luca Sanguinetti; Mérouane Debbah; Mohamed-Slim Alouini
R7.7	Channel Estimation in Massive MIMO Systems Using 1-Bit Quantization534 Christoph Stöckle; Jawad Munir; Amine Mezghani; Josef A. Nossek
R7.8	Secure Communication in Massive MIMO Relay Networks540 Gavan Amarasuriva: Rafael F. Schaefer: H. Vincent Poor

5G and Cloud Communications

R8.1	Geo-specific Encryption Through Implicitly Authenticated Location for 5G Wireless Systems545 Elizabeth Quaglia; Stefano Tomasin			
R8.2	Pre-equalized Faster Than Nyquist Transmission for 5G Cellular Microwave Backhaul551 Marco Maso; Stefano Tomasin			
R8.3	Pilot Pattern Adaptation for 5G MU-MIMO Wireless Communications557 Nassar Ksairi; Beatrice Tomasi; Stefano Tomasin			
R8.4	Backhaul Traffic Balancing and Dynamic Content-Centric Clustering for the Downlink of Fog Radio Access Network563 Di Chen; Stephan Schedler; Volker Kuehn			
R8.5	Caching Improvement Using Adaptive User Clustering568 Salah Eddine Hajri; Mohamad Assaad			
R8.6	Joint Cloud and Edge Processing for Latency Minimization in Fog Radio Access Networks573 Seok-Hwan Park; Osvaldo Simeone; Shlomo (Shitz) Shamai			
R8.7	Performance Analysis of Indoor Femtocell Networks using ESPAR Antennas578 Hebatallah Shoukry; Mathini Sellathurai; Rongrong Qian			
R8.8	On The Application of The Fast Hadamard Transform in Polar Codes583 Ammar Hadi; Emad Alsusa			
R8.9	Long-Term Power Allocation for Multi-Channel Device-to-Device Communication588 Ruhallah AliHemmati; Min Dong; Ben Liang; Gary Boudreau; S. Hossein Seyedmehdi			

Smart Grid Communications

S10.1	Impact of Compression and Aggregation in Wireless Networks on Smart Meter Data594 Mehdi Zeinali; John Thompson
S10.2	State Estimation in Electric Power Systems Using Belief Propagation: An Extended DC Model599 Mirsad Cosovic; Dejan Vukobratović
S10.3	Recovering Missing Data via Matrix Completion in Electricity Distribution Systems604 Cristian Genes; Iñaki Esnaola; Samir M. Perlaza; Luis Ochoa; Daniel Coca
S10.4	Smart Meter Privacy with Renewable Energy and a Finite Capacity Battery610 Giulio Giaconi; Deniz Gündüz

Interference Management in Adverse Networking condition	Interference	Management i	n Adverse	Networking	conditions
---	--------------	--------------	-----------	-------------------	------------

S11.1	MIMO Cellular Networks with Simultaneous Wireless Information and Power Transfer615 Thanh Tu lam; Marco Di Renzo; Justin P Coon
S11.2	Full Duplex Emulation via Spatial Separation of Half Duplex Nodes in a Planar Cellular Network620 Henning Thomsen; Dong Min Kim; Petar Popovski; Nuno K Pratas; Elisabeth de Carvalho
S11.3	A New Multiobjective Game for the Design of Wireless Transceivers with Local Coordination Ability625 Ivan Stupia; Luc Vandendorpe
S11.4	Blind Distributed Beamforming via Matrix Completion630 Evangelos Vlachos; Kostas Berberidis
S11.5	Quantized Team Precoding: A Robust Approach for Network MIMO under General CSI Uncertainties636 Paul de Kerret; David Gesbert
S11.6	Interference Alignment for Downlink Cellular Networks: Joint Scheduling and Precoding641 Yasser Fadlallah; Jean-Marie Gorce; Paul Ferrand; Leonardo S. Cardoso
S11.7	Use of Training Subcarriers for Synchronization in Low Latency Uplink Communication with GFDM646 Kiwon Lee, Mingeun Kang, Eui-Rim Jeong, Dong-Jo Park, Yong Lee

Beamforming, Precoding and Transceiver Designs of MIMO Systems

R9.1	Energy-Efficient Coordinated Beamforming with Rate Dependent Processing Power652 Oskari Tervo; Antti Tölli; Markku Juntti; Le-Nam Tran
R9.2	Hybrid Analog and Digital Beamforming for OFDM-Based Large-Scale MIMO Systems657 Foad Sohrabi; Wei Yu
R9.3	Blind Precoding in Line-of-Sight MIMO Channels663 Paul Ferrand; Sheng Yang
R9.4	Constructive Interference Based Constant Envelope Precoding668 Pierluigi Vito Amadori; Christos Masouros
R9.5	Queue Aware Precoder Design via OTA Training673 Ganesh Venkatraman; Antti Tölli; Markku Juntti; Le- Nam Tran
R9.6	Coordinated MIMO with Single-fed Load-Controlled Parasitic Antenna Arrays679 Konstantinos Ntougias; Dimitrios Ntaikos; Constantinos B. Papadias
R9.7	Analog Transmission of Correlated Sources over Spatially Correlated Fading SIMO MAC684 Pedro Suárez-Casal; Óscar Fresnedo; Luis Castedo; Javier Garcia-Frias
R9.8	MOSIC: A new ordering for OSIC MIMO detection690 Mostafa Medra; Khaled E. Ahmed; Timothy N. Davidson
R9.9	Multi-Stream MIMO MSE Balancing with Generalized Power Constraints695 José P González-Coma; Andreas Gründinger; Michael Joham; Luis Castedo; Wolfgang Utschick

Coding, Modulation a	and Equa	lization
----------------------	----------	----------

R10.1	The Use of Almost Linear Phase IIR filters in DFT Modulated Filter Banks for Communication Systems700 Mathias de Cacqueray-Valmenier, Adem Coskun, Izzet Kale
R10.2	Error Probability Analysis of M-QAM on Rayleigh Fading Channels with Impulsive Noise704 Zhen Mei; Martin Johnston; Stephane Y. Le Goff; Li Chen
R10.3	On Enhancing the Minimum Hamming Distance of Polar Codes709 Ammar Hadi; Emad Alsusa
R10.4	Selective Multi-Carrier Index Keying OFDM: Error Propagation Rate with Moment Generating Function714 Youngwook Ko
R10.5	Compressed Training Adaptive MIMO Equalization720 Baki B. Yılmaz; Alper T. Erdogan
R10.6	Design of MLSD-Based Receivers for Short-Range Optical Communications Using the Volterra Expansion726 Raquel Guerreiro Machado; Beatrice Tomasi; Hartmut Hafermann; Stefano Tomasin
R10.7	On Linear Encoder-Decoder Design for Multi-sensor State Estimation Subject to Quantization Noise and Channel Erasure732 Amirpasha Shirazinia; Subhrakanti Dey

Role of S	parsity	in Com	munication
-----------	---------	--------	------------

S12.1	Distributed Variable-Rate Quantized Compressed Sensing in Wireless Sensor Networks738 Markus Leinonen; Marian Codreanu; Markku Juntti
S12.2	Block Compressed Sensing For Feedback Reduction in Relay-Aided Multiuser Full Duplex Networks743 Khalil Elkhalil; Mohammed E. Eltayeb; Abla Kammoun; Tareq Y. Al- Naffouri; Hamid Reza Bahrami
S12.3	Sparsifying Dictionary Analysis for FIR MIMO Channel-Shortening Equalizers749 Abubakr O. Al-Abbasi; Ridha Hamila; Waheed U. Bajwa; Naofal Al-Dhahir
S12.4	Fundamental limits and achievable strategies for low energy compressed sensing with applications in wireless communication755 Tongxin Li; Mayank Bakshi; Pulkit Grover
S12.5	Spatially Resolved sub-Nyquist Sensing of Multiband Signals with Arbitrary Antenna Arrays761 Anastasia Lavrenko; Florian Roemer; Shahar Stein Ioushua; Deborah Cohen; Giovanni Del Galdo; Reiner S. Thoma; Yonina C. Eldar
S12.6	An Efficient Sparse Representation Algorithm for DOA Estimation in MIMO Radar System766 Xianpeng Wang; Luyun Wang; Xiumei Li; Guoan Bi
S12.7	Extended Target Localization Using the Variational Garrote770 Shilpa Rao; Chandra R Murthy
S12.8	Exact Recovery of Structured Block-Sparse Signals With Model-Aware Orthogonal Matching Pursuit776 Thomas Wiese; Lorenz Weiland; Wolfgang Utschick

Honeine

Localization and Track	ng (indoor and outdoor)
-------------------------------	-------------------------

S13.1	A Comparative Study of Sparse Recovery and Compressed Sensing Algorithms with Application to AoA Estimation781 Ahmad Bazzi; Dirk Slock; Lisa Meilhac; Swarnalathaa Panneerselvan
S13.2	Joint Localization and Cooperative Detection in Location-Aware Wireless Networks in the Presence of Ranging Outliers786 Yifeng Xiong; Nan Wu; Hua Wang; Jingming Kuang
\$13.3	Optimizing Waveforms for Positioning in 5G791 Armin Dammann; Thomas Jost; Ronald Raulefs; Michael Walter; Siwei Zhang
S13.4	Eavesdropping in wireless localization networks using round trip measurements796 Xiaofei Yu; Tingting Zhang; Liyuan Song; Qinyu Zhang
S13.5	The Impact of Proximate Base Station Measurements on Localizability in Cellular Systems801 Tapan Bhandari; Harpreet S Dhillon; R. Michael Beuhrer
S13.6	TDOA-FDOA based Multiple Target Detection and Tracking in the Presence of Measurement Errors and Biases806 Zhong Xionghu; Wee Peng Tay; Mei Leng; Sirajudeen Gulam Razul; Chong Meng Samson See
S13.7	Zoning-based Localization in Indoor Sensor Networks Using Belief Functions Theory812 Daniel AlShamaa; Farah Mourad-Chehade; Paul

Localization and Tracking in Wireless/UWB networks

R11.1	Experimental Study of Indoor Tracking Using UWB Measurements and Particle Filtering817 Vladimir Savic; Erik G. Larsson
R11.2	Sparsity Based UWB Receiver Design in Additive Impulse Noise Channels822 Sanjeev Sharma; Vimal Bhatia; Anubha Gupta
R11.3	Effects of Wall-Angle Distributions in Indoor Wireless Communications827 Martin Klaus Müller; Martin Taranetz; Markus Rupp
R11.4	Indoor Localization based on Multiple LEDs Position Estimation832 Olaoluwa Popoola; Funmilayo B. Ogunkoya; Wasiu O. Popoola; Roberto Ramirez-Iniguez; Sinan Sinanovic
R11.5	Joint Clock Parameter and Transmitter Position Estimation using TDOA in One Way Packet Transmission838 Jeevan Shrestha; Luc Vandendorpe
R11.6	Uncooperative RSS-Based Emitter Localization in Uncalibrated Mobile Networks844 Brian Beck; Robert John Baxley; Xiaoli Ma
R11.7	Source Localization Via Randomly Distributed Sensors850 Itsik Bergel; Yair Noam
R11.8	Analysis of wireless networks using Hawkes processes855 Michael G Moore; Mark Davenport

Interference Analysis in	Multiuser MIMO	Systems and	Hardware
related issues			

R12.1	Spatial Correlation Characterization of a Uniform Circular Array in 3D MIMO Systems860 Qurrat-Ul-Ain Nadeem; Abla Kammoun; Mérouane Debbah; Mohamed-Slim Alouini
R12.2	Degrees of Freedom of Time Correlated MISO Interference Broadcast Channels with Delayed CSIT866 Paula Aquilina; Tharmalingam Ratnarajah
R12.3	Outage Analysis for Group Detectors in MIMO Fading Channels872 Amr Ismail; Filippo Tosato
R12.4	Degrees of Freedom of Three-user MIMO-IC via Receiver Chain Alignment878 Jhanak Parajuli; Giuseppe Abreu
R12.5	Statistical Analysis of Single-Beam Interference Alignment Schemes884 Ignacio Santamaria; Jacobo Fanjul
R12.6	Impact of Transceiver Hardware Impairments on the Ergodic Channel Capacity for Rayleigh-Product MIMO Channels889 Anastasios Papazafeiropoulos; Shree Krishna Sharma; Symeon Chatzinotas; Tharmalingam Ratnarajah; Björn Ottersten
R12.7	Compensation of Power Amplifier Nonlinear Distortion in Spatial Modulation Systems895 Sandeep Bhat; A. Chockalingam
R12.8	Modified MRT and Outage Probability Analysis for Massive MIMO Downlink under Per-Antenna Power Constraint901 Chi Feng; Yindi Jing

Signal Processing for Full-duplex Communications

S14.1	Cross-tier Interference Mitigation in Wideband HetNets with Full Duplex907 Shengqian Han; Chenyang Yang; Andreas Molisch; Gang Wang
S14.2	Throughput Maximization for Full-Duplex Energy Harvesting MIMO Communications912 Batu Krishna Chalise; Himal A Suraweera; Gan Zheng
S14.3	Asymmetric Full-Duplex with Contiguous Downlink Carrier Aggregation917 Dani Korpi; Lauri Anttila; Mikko Valkama
S14.4	Fast Computation for Secure Communication with Full-Duplex Radio922 Lei Chen; Qiping Zhu; Yingbo Hua
S14.5	Power Allocation for Balancing the Effects of Channel Estimation Error and Pilot Overhead in Full-Duplex Decode-and-Forward Relaying927 Mikko Vehkapera; Taneli Riihonen; Risto Wichman; Baosheng Xu
S14.6	On the Feasibility of Full-Duplex Relaying Powered by Wireless Energy Transfer932 Taneli Riihonen; Long Zhao; Mikko Vehkapera; Xiaodong Wang
S14.7	Digital Predistortion of Power Amplifier Non-Linearities for Full-Duplex Transceivers937 Andrew Austin; Alexios Balatsoukas-Stimming; Andreas Burg
S14.8	Full-Duplex Spectrum Sensing for Multi-Antenna Non-Time-Slotted Cognitive Radio Networks942 Yibo He; Jiang Xue; Tharmalingam Ratnarajah; Mathini Sellathurai

Advanced 7	Topics in	Future	Generation	of	Satellite	Networks
------------	-----------	---------------	------------	----	------------------	-----------------

S15.1	On-board the Satellite Interference Detection with Imperfect Signal Cancellation948 Christos Politis; Sina Maleki; Christos G. Tsinos; Symeon Chatzinotas; Björn Ottersten				
S15.2	Modulo loss reduction for Tomlinson-Harashima precoding in a multi- beam satellite forward link953 Erica Debels; Adriaan Suls; Marc Moeneclaey				
S15.3	User Scheduling in Satellite Return Links - A Perfect Graph Paradigm958 Alexis I. Aravanis; Panayotis Cottis				
S15.4	Network Coding Function Virtualization962 Angeles Vazquez-Castro; Tan Do-Duy				
\$15.5	High Performance Bio-Inspired Analog Equalizer for DVB-S2 Non-Linear Communication Channel967 Marc Bauduin; Quentin Vinckier; Serge Massar; Francois Horlin				
\$15.6	Hybrid Analog-Digital Transmit Beamforming for Spectrum Sharing Satellite-Terrestrial Systems972 Miguel Angel Vazquez; Luis Blanco; Xavier Artiga; Ana Perez-Neira				