Solid Oxide Fuel Cells 12 (SOFC XII)

Editors:

S. C. Singhal Pacific Northwest National Laboratory Richland, Washington, USA

K. Eguchi Kyoto University Kyoto, Japan

Sponsoring Divisions:

🐻 High Temperature Materials

E Battery

Energy Technology

Published by **The Electrochemical Society** 65 South Main Street, Building D Pennington, NJ 08534-2839, USA tel 609 737 1902 fax 609 737 2743 www.electrochem.org

Festransactions [™]

Vol. 35 No. 1

Copyright 2011 by The Electrochemical Society. All rights reserved.

This book has been registered with Copyright Clearance Center. For further information, please contact the Copyright Clearance Center, Salem, Massachusetts.

Published by:

The Electrochemical Society 65 South Main Street Pennington, New Jersey 08534-2839, USA

> Telephone 609.737.1902 Fax 609.737.2743 e-mail: ecs@electrochem.org Web: www.electrochem.org

ISSN 1938-6737 (online) ISSN 1938-5862 (print)

ISBN 978-1-56677-862-6 (CD-ROM) ISBN 978-1-60768-212-7 (PDF) ISBN (3 Part Set) 978-1-60768-236-3 (Soft-cover)

Printed in the United States of America.

ECS Transactions, Volume 35, Issue 1 Solid Oxide Fuel Cells 12 (SOFC-XII)

Table of Contents

Preface

iii

Chapter 1 Plenary Papers

Recent Developments in the SECA Program S. D. Vora	3
Status of National Project for SOFC Development in Japan K. Hosoi, M. Ito, and M. Fukae	11
European SOFC Technology - Status and Trends <i>R. Steinberger-Wilckens</i>	19
Solid Oxide Fuel Cells Canada NSERC Strategic Research Network V. I. Birss, A. Petric, and S. Thomas	31
The Strategic Electrochemical Research Center in Denmark M. Mogensen and K. Hansen	43
Recent Results in Solid Oxide Fuel Cell Development at Forschungszentrum Juelich <i>R. Steinberger-Wilckens, L. Blum, H. Buchkremer, B. de Haart,</i> <i>J. Malzbender, and M. Pap</i>	53

Chapter 2 Stacks and Systems

Development of Solid Oxide Fuel Cells at Versa Power Systems B. Borglum, E. Tang, and M. Pastula	63
Recent Progress in Development and Manufacturing of SOFC at Topsoe Fuel Cell A/S and Risø DTU N. Christiansen, H. Holm-Larsen, S. Primdahl, M. Wandel, S. Ramousse, and A. Hagen	71

v

CFCL's BlueGen Product R. J. Payne, J. Love, and M. Kah	81
 Status of Hexis' SOFC Stack Development and the Galileo 1000 N Micro-CHP System A. Mai, B. Iwanschitz, U. Weissen, R. Denzler, D. Haberstock, V. Nerlich, and A. Schuler 	87
Development of Residential SOFC CHP System with Flatten Tubular Segmented-In-Series Cells Stack H. Yoshida, T. Seyama, T. Sobue, and S. Yamashita	97
Development of SOFC-GT Combined Cycle System with Tubular Type Cell Stack S. Yoshida, T. Kabata, M. Nishiura, S. Koga, K. Tomida, K. Miyamoto, Y. Teramoto, N. Matake, H. Tsukuda, S. Suemori, Y. Ando, and Y. Kobayashi	105
Performance of a 10 kW SOFC Demonstration Unit M. Halinen, M. Rautanen, J. Saarinen, J. Pennanen, A. Pohjoranta, J. Kiviaho, M. Pastula, B. Nuttall, C. Rankin, and B. Borglum	113
 Progress on SOFC Power Generation Module and System Developed by NTT, SPP and THG K. Hayashi, A. Miyasaka, N. Katou, Y. Yoshida, H. Arai, M. Hirakawa, H. Uwani, S. Kashima, H. Orisima, S. Kurachi, A. Matsui, K. Katsurayama, and E. Tohma 	121
Manufacturing and Market-Oriented Development of SOFC Generators at SOFCpower SpA <i>M. Bertoldi, O. Bucheli, S. Modena, D. Larrain, and A. Ravagni</i>	127
Latest Update on Delphi's Solid Oxide Fuel Cell Stack for Transportation and Stationary Applications <i>S. Mukerjee, K. Haltiner, R. Kerr, J. Kim, and V. Sprenkle</i>	139
 Metal Supported Solid Oxide Fuel Cells and Stacks for Auxilary Power Units Progress, Challenges and Lessons Learned A. Ansar, P. Szabo, J. Arnold, Z. Ilhan, D. Soysal, R. Costa, A. Zagst, M. Gindrat, and T. Franco 	147
Product Development for SOFC and SOE Applications A. Glauche, T. Betz, and M. Ise	157
Characterization of Propane-Fueled SOFC Portable Power Systems Y. Du, D. Cui, and K. Reifsnider	167

vi

Universal SOFC Module for Rapid Start-Ups U. Bossel	179
Long-Term Operation of Planar Type SOFC Stacks L. de Haart and I. Vinke	187
Post-Test Characterization of an SOFC Short-Stack after 17,000 Hours of Steady Operation <i>N. Menzler, P. Batfalsky, S. Groβ, V. Shemet, and F. Tietz</i>	195
Current Status of NEDO Project on Durability/Reliability of Solid Oxide Fuel Cell Stacks/Systems <i>H. Yokokawa</i>	207
Durability Tests of Flatten Tubular Segmented-in-Series Type SOFC Stacks for Intermediate Temperature Operation <i>K. Horiuchi, K. Nakamura, Y. Matsuzaki, S. Yamashita, T. Horita,</i> <i>H. Kishimoto, K. Yamaji, and H. Yokokawa</i>	217
In situ Observation of the Deformation and Mechanical Damage of SOFC Cell/Stack K. Sato, T. Sakamoto, A. Kaimai, K. Yashiro, K. Amezawa, T. Hashida, J. Mizusaki, and T. Kawada	225
Demonstration of a Highly Efficient SOFC System with Combined Partial Oxidation and Steam Reforming D. Schimanke, O. Posdziech, B. Mai, S. Kluge, T. Strohbach, and C. Wunderlich	231
System Relevant Redox Cycling in SOFC Stacks J. Brabandt, Q. Fang, D. Schimanke, M. Heinrich, B. Mai, and C. Wunderlich	243
Portable μ-SOFC System Based on Multilayer Technology S. Reuber, M. Schneider, M. Stelter, and A. Michaelis	251
Metal-Supported Cells with Comparable Performance to Anode-Supported Cells in Short-Term Stack Environment <i>M. Rüttinger, R. Mücke, T. Franco, O. Büchler, N. Menzler, and</i> <i>A. Venskutonis</i>	259
 High Efficiency CFY-Stack for High Power Applications S. Megel, M. Kusnezoff, N. Trofimenko, V. Sauchuk, A. Michaelis, A. Venskutonis, K. Rissbacher, W. Kraussler, M. Brandner, C. Bienert, and L. Sigl 	269

vii

System Tests and Operation Control Strategies of an SOFC-CHP-Device for Field Testing	279
R. Belitz, M. Heddrich, M. Jahn, R. Näke, J. Paulus, and M. Pohl	
The Effects of Dynamic Dispatch on the Degradation and Lifetime of Solid Oxide Fuel Cell Systems	285
A. Nakajo, F. Mueller, D. McLarty, J. Brouwer, J. Van Herle, and D. Favrat	
Environmental Effects on a Thermally Self-Sustained SOFC Hot Zone	297

Environmental Effects on a Thermally Self-Sustained SOFC Hot Zone D. Cui, Y. Du, K. Reifsnider, and F. Chen

Chapter 3 Cell Designs, Processing and Performance

Recent Development of Electrolyte Supported Cells with High Power Density N. Trofimenko, M. Kusnezoff, and A. Michaelis	
Development of Anode-Supported Flat-Tube Solid Oxide Fuel Cell (SOFC) Stack with High Power Density S. Lee, J. Lee, T. Lim, S. Park, R. Song, and D. Shin	327
Medium Temperature Solid Oxide Fuel Cells Based on Supporting Porous Anode and Bilayered Electrolyte <i>E. Lust, I. Kivi, K. Tamm, P. Möller, E. Anderson, H. Kurig, M. Vestli, and</i> <i>G. Nurk</i>	333
Development of Metal-Supported Solid Oxide Fuel Cells T. Franco, M. Haydn, R. Mücke, A. Weber, M. Rüttinger, O. Büchler, S. Uhlenbruck, N. Menzler, A. Venskutonis, and L. Sigl	343
Development of Highly Robust, Volume-Manufacturable Metal-Supported SOFCs for Operation Below 600°C <i>R. T. Leah, A. Bone, A. Selcuk, D. Corcoran, M. Lankin,</i> <i>Z. Dehaney-Steven, M. Selby, and P. Whalen</i>	351
Development of Long-Term Stable and High-Performing Metal-Supported SOFCs T. Klemensø, J. Nielsen, P. Blennow, A. Persson, T. Stegk, P. Hjalmarsson, B. Christensen, S. Sønderby, J. Hjelm, and S. Ramousse	369
Metal Supported Solid Oxide Fuel Cell by Freeze Tape Casting P. Wei, S. Sofie, Q. Zhang, and A. Petric	379

viii

NexTech's FlexCell Technology for Planar SOFC Stacks M. Day, S. L. Swartz, and G. Arkenberg	385
2R-Cell: A Universal Cell for an Easy and Safe SOFC Operation <i>R. Ihringer</i>	393
Development of an All Ceramic SOFC I. Wærnhus, A. Vik, C. Ilea, and S. Faaland	403
Improved Redox and Thermal Cycling Resistant Tubular Ceramic Fuel Cells A. R. Hanifi, A. Torabi, M. Zazulak, T. H. Etsell, L. Yamarte, P. Sarkar, and M. Tucker	409
Transient Performance of Micro-Tubular Solid Oxide Fuel Cells and Stacks <i>K. Howe and K. Kendall</i>	419
Performance and Energy Efficiency of a Microtubular Solid Oxide Fuel Cell T. Suzuki, S. Sugihara, K. Hamamoto, T. Yamaguchi, and Y. Fujishiro	425
Evaluation of ScSZ-Based Microtubular SOFCs under 3% Humidified CH ₄ Fuel Flow at Intermediate Temperature <i>T. Yamaguchi and N. Sammes</i>	431
Impact of Sintering Mechanism Evolution on Electrochemical Performance of Cathode Support Tubular Solid Oxide Fuel Cells J. Zhou, C. Zhao, X. Ye, S. Wang, and T. Wen	437
 Tubular Metal Support Solid Oxide Fuel Cell Manufacturing and Characterization L. M. Rodriguez-Martinez, M. Rivas, L. Otaegi, N. Gomez, M. Alvarez, E. Sarasketa-Zabala, J. Manzanedo, N. Burgos, F. Castro, A. Laresgoiti, and I. Villarreal 	445
IP-SOFC Performance Measurement and Prediction B. Haberman, C. Martinez Baca, and T. Ohrn	451
Ultra-Low Mass Planar SOFC Design M. Badding, W. Bouton, J. Brown, L. Kester, S. Pollard, C. W. Tanner, and P. Tepesch	465
Thin Film Low Temperature Solid Oxide Fuel Cell (LTSOFC) by Reactive Spray Deposition Technology (RSDT) <i>R. Maric, K. Furusaki, D. Nishijima, and R. Neagu</i>	473
Materials for Proton Conducting Solid Oxide Fuel Cells (H-SOFCs) V. Thangadurai, W. H. Kan, B. Mirfakhraei, S. Bhella, and T. Trinh	483

ix

Imaging of Oxide Ionic Flows at Practical SOFC Cells by Isotope Labeling Technique <i>T. Horita, T. Shimonosono, H. Kishimoto, K. Yamaji, M. E. Brito, and</i> <i>H. Yokokawa</i>	493
The Influence of Porous Support Morphology on the Electrochemical Performance of Solid Oxide Fuel Cells <i>A. Torabi, A. R. Hanifi, T. H. Etsell, and P. Sarkar</i>	499
Accelerated Degradation by Impurities for Evaluating Life Time of SOFCs T. Horita, H. Kishimoto, K. Yamaji, M. E. Brito, T. Shimonosono, D. Cho, M. Izuki, F. Wang, and H. Yokokawa	511
Evaluation of Stress Conditions in Operated Anode Supported Type Cells Based on In-Situ Raman Scattering Spectroscopy <i>M. Nagai, F. Iguchi, S. Onodera, N. Sata, T. Kawada, and H. Yugami</i>	519
Anode/Electrolyte Interface Modification in LSGM Electrolyte Supported SOFC K. Kawahara, S. Suda, M. Suzuki, M. Kawano, H. Yoshida, and T. Inagaki	527
Fractal Current Distribution Structures for Thin Electrolyte Supported Fuel Cells <i>C. W. Tanner and K. L. Work</i>	533
Development of Planar Solid Oxide Fuel Cell in Niroo Research Institute, Iran H. Mohebbi, A. Raoufi, A. H. Ghobadzadeh, H. Aslannejad, R. Mahmoodi, I. Azarian, and M. Shiva	543
Fabrication of Solid Oxide Fuel Cell Using the Dual Tape Casting Method A. H. Ghobadzadeh, H. Mohebbi, A. Raoufi, H. Aslannejad, and S. Davari	551
Fabrication and Development of Perovskite Anode Supported Planar SOFCs A. T. Tesfai, C. Savaniu, and J. T. Irvine	557
SOFC Material and Stack Characterization Tests for Micro-CHP Application S. McPhail, F. Padella, G. Cinti, and G. Discepoli	565
A New Type of SOFC for Conversion of High Temperature Heat to Electricity without Carnot Limitation <i>K. T. Jacob</i>	573
Current-Voltage Relationship Considering Electrode Degradation Using Sm-Doped Ceria Electrolytes in SOFCs <i>T. Miyashita</i>	583

x

Progress Toward Inkjet Deposition of Segmented-in-Series Solid-Oxide Fuel Cell Architectures <i>N. Faino, W. Rosensteel, B. Gorman, and N. Sullivan</i>	593
 Challenges Of Thin Layers For SOFC Devices: From Low-Cost Chemical Bath Deposition (CBD) to Atomic Layer Deposition (ALD) B. Medina-Lott, M. Tassé, C. Brahim, A. Ringuedé, L. Niinistö, and M. Cassir 	601
Electrochemical Performance of Cone-Shaped Tubular Anode Supported Solid Oxide Fuel Cells Fabricated by Low-Pressure Injection Moulding Technique J. Xiao, J. Liu, and J. Ding	609
Performance of Anode Microstructure Controlled Ni-ScSZ/LSGM/LSCF-Ag SOFCs by Low Temperature Fabrication Process <i>Y. Endo, K. Sasaki, A. Suzuki, and T. Terai</i>	615
Evaluation of Fuel Cell Performance and Degradation M. Williams, R. Gemmen, and G. Richards	621
Impedance Analysis of Practical Segmented-in-Series Tubular Solid OxideFuel CellsB. Liu, T. Matsui, H. Muroyama, K. Tomida, T. Kabata, and K. Eguchi	637
Impedance Behavior of SOFC at High Fuel Utilization and a Way of Evaluating Diffusion Contribution <i>A. Momma, Y. Tanaka, K. Takano, and T. Kato</i>	647
 La_{0.4}Sr_{0.6}Co_{0.8}Fe_{0.2}O_{3-δ} / Ce_{0.9}Gd_{0.1}O_{2-δ} Interface: Characterization by High Resolution SEM and TEM A. L. Soldati, L. Baqué, H. Troiani, C. Cotaro, A. Schreiber, A. Caneiro, and A. Serquis 	657
Hydrogen-Oxidation Kinetics in Reformate-Fuelled Anode Supported SOFC A. Kromp, A. Leonide, A. Weber, and E. Ivers-Tiffée	665
Operation Characteristics of Tubular Segmented-In-Series Solid Oxide Fuel Cells (SOFC) <i>T. Lim, U. Yun, J. Lee, S. Lee, S. Park, R. Song, and D. Shin</i>	679
Metal-Supported SOFC with Ceramic-Based Anode P. Blennow, T. Klemensø, A. Persson, K. Brodersen, A. K. Srivastava, B. Sudireddy, S. Ramousse, and M. Mogensen	683

xi

Analytical Investigation of Cell Performance of Intermediate-Temperature Disk Type Seal-Less SOFC Fueled by Methane <i>T. Tanaka, Y. Inui, and N. Chitose</i>	693
 Anode-Supported Tubular SOFC at Low Temperature Using Ni, Fe, GDC, and YSZ Based Anode Support B. Liang, T. Suzuki, K. Hamamoto, T. Yamaguchi, Y. Fujishiro, M. Awano, B. Ingram, and J. Carter 	705
Power Generating Property of Tubular SOFC Using DME as Fuel: Focus on Portable Device K. Sato, Y. Tanaka, A. Momma, K. Kato, A. Negishi, and T. Kato	713
Investigation on the Electrochemical Properties of the Ni-YSZ/Ni-ScSZ/ScSZ/LSM Tubular Solid Oxide Cell for High Temperature Steam Electrolysis <i>L. Shao, S. Wang, J. Qian, Y. Xue, and R. Liu</i>	721
Combined Theoretical and Experimental Studies of H ₂ and CO Oxidation over YSZ Surface <i>A. Gorski, V. Yurkiv, W. G. Bessler, and H. Volpp</i>	727
Numerical Simulation of Anode-Supported Disc-Type Single Cell at Anode Off-Gas Recycle Y. Tanaka, A. Momma, K. Sato, and T. Kato	739
Production of Compliant Current Collector-Supported Micro-Tubular Solid Oxide Fuel Cells <i>R. De La Torre, M. Casarin, and V. M. Sglavo</i>	747
Investigations on Single Chamber Solid Oxide Fuel Cells: From Single Cell to Micro-Stack Z. Lü, B. Wei, M. Liu, Z. Wang, Y. Tian, and W. Su	757
The Performance of a Single-Chamber Solid Oxide Fuel Cell Operated under Thin Oxygen Condition within Methane Fuel <i>Y. Liu, Z. Lü, and Y. Tian</i>	763
 Towards Understanding the Dual Membrane Fuel Cell (IDEAL-Cell) Using a Metallic Central Membrane Z. Ilhan, A. Ansar, N. Wagner, S. Presto, M. Viviani, A. Babucci, D. Vladikova, Z. Stoynov, and A. Thorel 	769
Low Temperature Operating Micro Solid Oxide Fuel Cells with Perovskite Type Proton Conductors F. Iguchi, K. Kubota, Y. Inagaki, S. Tanaka, N. Sata, M. Esashi, and H. Yugami	777

xii

Internal Methane Reforming High Temperature Proton Conductor (HTPC) Fuel Cells I. Luisetto, E. Di Bartolomeo, A. D'Epifanio, F. Basoli, and S. Licoccia	785
Performance of Solid Oxide Fuel Cells with In-Doped BaZrO ₃ Electrolyte Films on Different Anode Substrates <i>L. Bi, E. Fabbri, and E. Traversa</i>	797
Chemically Stable Electrolytes and Advanced Electrode Architectures for Efficient Proton Ceramic Fuel Cells	805

G. Taillades, P. Battochi, M. Taillades, D. Jones, and J. Roziére

Chapter 4 Cell, Stack and System Modeling

Modeling SOFC Cathodes Based on 3-D Representations of Electrode Microstructure <i>C. Kreller, M. Drake, S. B. Adler, H. Chen, H. Yu, K. Thornton,</i> <i>J. R. Wilson, and S. A. Barnett</i>	815
First Principles Modeling of Oxygen Mobility in Perovskite SOFC Cathode and Oxygen Permeation Membrane Materials <i>E. Kotomin, R. Merkle, Y. Mastrikov, M. M. Kuklja, and J. Maier</i>	823
Three-Dimensional Simulation of SOFC Anode Polarization Characteristics Based on Sub-Grid Scale Model <i>M. Kishimoto, H. Iwai, M. Saito, and H. Yoshida</i>	831
Modeling the Electrochemistry of an SOFC through the Electrodes and Electrolyte <i>E. Ryan, K. Recknagle, and M. A. Khaleel</i>	841
Computational Study on Impurities Poisoning and Degradation of an SOFC Anode Based on Density Functional Theory <i>T. Ogura, K. Nakao, T. Ishimoto, and M. Koyama</i>	853
Multi-Scale Modeling of Solid Oxide Fuel Cells: From Patterned Anodes to a Power Plant System <i>W. G. Bessler</i>	859
Simulation of Two-Dimensional Electrochemical Impedance Spectra of Solid Oxide Fuel Cells Using Transient Physical Models <i>Y. Shi, H. Wang, and N. Cai</i>	871

xiii

Mathematical Modeling and Simulation for Optimization of IDEAL-Cell Performance A. Bertei, C. Nicolella, F. Delloro, W. G. Bessler, N. Bundschuh, and A. Thorel	883
Modeling Segmented-in-Series SOFCs with Distributed Charge Transfer and Internal Reforming <i>H. Zhu and R. J. Kee</i>	895
A Three Dimensional Electrical Model of SOFC Stack M. Le-Ny, O. Chadebec, G. Cauffet, J. Dedulle, and Y. Bultel	903
Analytical Models for SOFC Electrodes with Variable Cross-Section Microstructures <i>G. Nelson, A. Peracchio, B. Cassenti, and W. K. Chiu</i>	913
Multiscale Simulation of Electro-Chemo-Mechanical Coupling Behavior of PEN Structure under SOFC Operation K. Terada, T. Kawada, K. Sato, F. Iguchi, K. Yashiro, K. Amezawa, M. Kubo, H. Yugami, T. Hashida, J. Mizusaki, H. Watanabe, T. Sasagawa, and H. Aoyagi	923
Numerical and Experimental Analysis of a Solid Oxide Fuel Cell Stack S. Beale, A. D. Le, H. Roth, J. Pharoah, H. Choi, L. de Haart, and D. Froning	935
Modeling of a SOFC Fuelled by Methane: Influence of the Methane Steam Reforming Kinetics <i>K. Girona, J. Toyir, P. Gélin, and Y. Bultel</i>	945
Thermodynamic Influence Analysis of Available Fuels and Reforming Methods on SOFC System Efficiency <i>M. Heddrich, M. Jahn, A. Michaelis, and E. Reichelt</i>	955
A Micro-Scale Model for Oxygen Reduction on LSM-YSZ Cathode S. R. Pakalapati, I. Celik, H. O. Finklea, M. Gong, and X. Liu	963
A Near Triple-Phase Boundary Region Model for H ₂ S Poisoning of SOFC Anodes D. S. Monder and K. Karan	977
 An Innovative Electrochemical Model for Three-Dimensional Modeling of a SOFC Stack Used in Electrolysis Mode D. Grondin, J. Deseure, A. Brisse, M. Zahid, B. Grondin-Perez, J. Chabriat, and P. Ozil 	987

xi	lV

Comparison between FIB-SEM Experimental 3-D Reconstructions of SOFC Electrodes and Random Particle-Based Numerical Models <i>H. Choi, D. Gawel, A. Berson, J. Pharoah, and K. Karan</i>	997
Exchange Current Density of Solid Oxide Fuel Cell Electrodes T. Yonekura, Y. Tachikawa, T. Yoshizumi, Y. Shiratori, K. Ito, and K. Sasaki	1007
Experimental And Theoretical Approach Of Surface Reactivity Of CeO ₂ For SOFC Application <i>T. Désaunay, B. Medina-Lott, A. Ringuedé, M. Cassir, C. Adamo, and</i> <i>F. Labat</i>	1015
Three Dimensional Simulation of a Counter-Flow Planar Solid Oxide Fuel Cell Y. Mollayi Barzi, A. Raoufi, N. Manafi Rasi, and S. Davari	1021
Numerical Approach of a Single-Chamber Solid Oxide Fuel Cell without Mixed Reactant Feeding S. Ould Ahmedou, J. Deseure, O. Doche, and Y. Bultel	1035
Numerical Analysis on the Dynamic Behavior of a Solid Oxide Fuel Cell with a Multivariable Control Strategy Y. Komatsu, S. Kimijima, and J. Szmyd	1045
Self-Consistent-Field Electrochemistry D. Gatewood, C. Turner, and B. I. Dunlap	1055
Numerical Simulation of Multi-Channel Planar Solid Oxide Fuel Cell Unit by Integrating Continuum Micro-Scale PEN Sub-Model <i>H. Wang, Y. Shi, and N. Cai</i>	1065
Phase Field Model of Electrochemical Impedance Spectroscopy W. Gathright, M. Jensen, and D. Lewis	1077
Current Distribution Analysis of a Microtubular Solid Oxide Fuel Cell with Surface Temperature Measurements <i>H. Nakajima and T. Kitahara</i>	1087
Solid Oxide Fuel Cell Electrode 3D Microstructure and Performance Modeling <i>K. Rhazaoui, Q. Cai, P. Shearing, C. Adjiman, and N. Brandon</i>	1097
Effect of Porous Microstructural Properties on the Results of a Cell-Level Model in Solid Oxide Fuel Cells	1107

H. Choi, A. Berson, J. Pharoah, and S. Beale

xv

Chapter 5 Electrolyte Materials, Processing and Performance

Strain Effect on Oxygen Migration in Yttria-Stabilized Zirconia W. Araki, M. Kuribara, and Y. Arai	1117
Pulsed Laser Deposition of Superlattices Based on Ceria and Zirconia D. Pergolesi, A. Tebano, E. Fabbri, G. Balestrino, S. Licoccia, and E. Traversa	1125
Chemical Expansion and Frozen-In Oxygen Vacancies in Pr-Doped Ceria Y. Kuru, S. R. Bishop, J. Kim, B. Yildiz, and H. L. Tuller	1131
Mechanical, Electrical, and Optical Properties of (Pr,Ce)O ₂ Solid Solutions: Kinetic Studies S. R. Bishop, J. Kim, N. Thompson, D. Chen, Y. Kuru, T. Stefanik, and H. L. Tuller	1137
Mechanical Properties of $Ce_{0.9}Gd_{0.1}O_{2-\delta}$ at High Temperatures under Controlled Atmospheres <i>T. Kushi, K. Sato, A. Unemoto, K. Amezawa, and T. Kawada</i>	1145
Oxygen Diffusion in Ordered/Disordered Double Perovskites A. Tarancón, A. Chroneos, D. Parfitt, and J. Kilner	1151
Gadolinia-Doped Ceria Cathode Interlayer for Low Temperature Solid Oxide Fuel Cell Y. Kim, T. M. Gür, and F. B. Prinz	1155
Influence of Small Amounts of NiO on the Electrical Conductivity of 8YSZ <i>R. Batista and E. N. Muccillo</i>	1161
Phase Transformation of Stabilized Zirconia on SOFC Stacks H. Kishimoto, T. Shimonosono, K. Yamaji, M. E. Brito, T. Horita, and H. Yokokawa	1171
Defect Formation in SOFC Electrolyte Films during Fabrication X. Wang, T. Yota, and A. Atkinson	1177
Characterization of Zirconia-India Ceramics Sintered by Spark Plasma D. Z. de Florio and F. Coral Fonseca	1187
Self-Supported Thin Yttria-Stabilized Zirconia Electrolytes for Solid Oxide Fuel Cells Prepared by Laser Machining A. Larrea, D. Sola, M. Laguna-Bercero, J. Peña, R. Merino, and V. Orera	1193

xvi

ZrO ₂ -CeO ₂ Interface Properties: A First-Principle Investigation M. Fronzi, A. De Vita, Y. Tateyama, and E. Traversa	1203
A Study of Coarsening Samarium Doped Ceria on Interaction with Yttria Stabilized Zirconia X. Zhang, P. Hamel, S. Yick, and M. Robertson	1211
Electrical Properties of Tb and Sm Co-Doped Ceria Electrolyte at Different Oxygen Partial Pressures <i>M. Vestli, G. Nurk, and E. Lust</i>	1219
The Influence of Sintering Time of Feedstock Powders on the Electrical Properties of La ₁₀ (SiO ₄) ₆ O ₃ Electrolyte Coatings <i>W. Gao, H. Liao, and C. Coddet</i>	1225
Soft Chemistry Routes for the Synthesis of Sr _{0.02} La _{0.98} Nb _{0.6} Ta _{0.4} O ₄ Proton Conductor <i>A. Santibáñez-Mendieta, E. Fabbri, S. Licoccia, and E. Traversa</i>	1235
BaCe _{0.8} Zr _{0.1} Y _{0.1} O _{3-α} Thin Film Elaborated by Reactive Magnetron Sputtering <i>M. Arab Pour Yazdi, P. Briois, and A. Billard</i>	1243
Synthesis and Properties of BaZr _{0.1} Ce _{0.7} Y _{02-x} $M_xO_{3-\delta}$ (x = 0, 0.1; M = Dy, Yb) Compounds <i>R. Muccillo and E. N. Muccillo</i>	1251
Development of Novel Fe-Doped Barium Calcium Niobates as Promising Mixed Conductors for Solid Oxide Fuel Cells (SOFCs) W. H. Kan, T. Trinh, T. Fürstenhaupt, and V. Thangadurai	1259
Low Temperature Densification and Electrical Property of a Carbonate-Added Proton Conducting Ceramic <i>X. Li, N. Xu, L. Zhange, and K. Huang</i>	1267
Apatite Coatings Deposited by DC Magnetron Sputtering P. Briois, C. Mazataud, S. Fourcade, F. Mauvy, J. Grenier, and A. Billard	1275

Chapter 6 Anode Materials, Processing and Performance

Single Step Preparation of Nano-Dispersed NiO/YSZ Composites for Solid	1285
Oxide Fuel Cell	
J. Song, Y. Park, H. Bae, J. Ahn, B. Seong, D. Kim, and J. Jun	

xvii

Multilayered SOFC Anode Structure with Electroless Ni-YSZ for Enhancement of Cell Performance <i>M. Mukhopadhyay, J. Mukhopadhyay, A. Das Sharma, and R. N. Basu</i>	1293
Influence of Tertiary Phases Incorporated into Ni-Based Cermets by Solution Precursor Plasma Spraying (SPPS) on Anode Stability <i>E. Lay, C. Metcalfe, and O. Kesler</i>	1303
3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography <i>G. Nelson, W. Harris, J. Izzo, K. N. Grew, W. K. Chiu, Y. Chu, J. Yi,</i> <i>J. Andrews, Y. Liu, and P. Pianetta</i>	1315
 X-ray Imaging and Analysis of 3D Microstructural Changes in Aged Ni-YSZ Anode G. Nelson, J. Izzo, J. Lombardo, W. Harris, A. Cocco, W. K. Chiu, K. N. Grew, A. Faes, A. Hessler-Wyser, J. Van Herle, Y. Chu, and S. Wang 	1323
Characterization and Carbon Tolerance of New Au - Mo - Ni/GDC Cermet Powders for use as Anode Materials in Methane Fuelled SOFCs D. K. Niakolas, M. Athanasiou, S. Neophytides, and S. Bebelis	1329
Study of Ga Doped LSCM as an Anode for SOFC A. Ghosh, A. Azad, and J. T. Irvine	1337
Preliminary Studies of the Ba-Doped La/Sr Chromo-Manganite Series as New SOFC Anode Materials <i>E. Lay, G. Gauthier, and L. Dessemond</i>	1345
A Novel Redox Stable Catalytically Active Electrode for Solid Oxide Fuel Cells <i>Q. Liu, G. Xiao, T. Howell, T. L. Reitz, and F. Chen</i>	1357
Microstructural Characterization of SOFC Electrodes: Observations and Simulations P. Shearing, Q. Cai, C. Adjiman, A. Marquis, R. Clague, J. Gelb, R. Bradley, P. Withers, and N. Brandon	1367
Correlation between Microstructure and Electrochemical Characteristics of Ni-YSZ Anode Subjected to Redox Cycles H. Muroyama, H. Sumi, R. Kishida, J. Kim, T. Matsui, and K. Eguchi	1379
Microwave-Assisted Preparation of Cu Coated Ni/YSZ Anode for Direct Utilization of Dry CH ₄ in SOFC S. Islam and J. M. Hill	1389

xviii

Evaluation of Sn-Modified Ni/YSZ SOFC Anodes for the Direct Utilization of Methane <i>A. Singh and J. M. Hill</i>	1397
In-Situ Measurement of SOFC Anode Surface Processes E. J. Brightman, R. Maher, D. G. Ivey, G. Offer, and N. Brandon	1407
Impedance Studies on Solid Oxide Fuel Cells with Yttrium-Substituted SrTiO ₃ Ceramic Anodes <i>Q. Ma, F. Tietz, A. Leonide, and E. Ivers-Tiffée</i>	1421
 Evaluating Overpotentials in GDC Electrodes for H₂/H₂O Reactions in Solid Oxide Electrochemical Cells L. Wang, C. Zhang, M. Grass, Y. Yu, K. Gaskell, Z. Hussain, Z. Liu, B. Eichhorn, and G. Jackson 	1435
Understanding Performance Losses at Ni-Based Anodes Due to Sulphur Exposure V. I. Birss, L. Deleebeeck, S. Paulson, and T. Smith	1445
Mg and Fe Modified Ni/GDC Cermets as Sulfur Tolerant Anodes of Solid Oxide Fuel Cells L. Zhang and S. Jiang	1455
Characterization of the Ni-8YSZ Cermet Creep and Its Impact on the Cell 'Redox' Tolerance J. Laurencin, G. Delette, F. Usseglio-viretta, S. di Iorio, and F. Lefebvre	1463
Effect of Redox Cycling on Mechanical Properties of Ni-YSZ Cermets for SOFC Anodes S. Sukino, S. Watanabe, K. Sato, F. Iguchi, H. Yugami, T. Kawada, J. Mizusaki, and T. Hashida	1473
A Study of the Rheological Properties of NiO/ScSZ Screen-Printing Inks and Their Application to SOFC Anodes <i>M. Somalu, N. Brandon, and V. Yufit</i>	1483
Measurement of Knudsen and Effective Ordinary Diffusion Coefficients in Solid Oxide Fuel Cell Anodes Fabricated by Atmospheric Plasma Spraying Using Powder, Suspension, and Solution Precursor Feedstocks <i>C. Metcalfe, E. Lay, and O. Kesler</i>	1501
Electrooxidation of Reformate Gases at Model Anodes A. Weber, A. Utz, J. Joos, E. Ivers-Tiffée, H. Störmer, D. Gerthsen, V. Yurkiv, H. Volpp, and W. G. Bessler	1513

	xix

Gas Transport and Internal Reforming Chemistry in SOFC Anode Supports and Structures A. E. Richards, N. Sullivan, R. J. Kee, M. McNeeley, and S. Babiniec	1529
Performance of Sm _{0.95} Ce _{0.05} Fe _{1-x} Ni _x O _{3-δ} Perovskite as Anode Materials under Methane Fuel for Low Temperature Solid Oxide Fuel Cells (LT -SOFC) S. M. Bukhari and J. B. Giorgi	1539
Adsorptive Properties of the Ni _{1-x} Co _x -Based Cermet Anode for the Oxidation of Methane <i>T. Sawahata, H. Takayanagi, T. Wah Tzu, and K. Sato</i>	1545
Gas Products Analysis during the Electrochemical Conversion of Dry Methane with a La _{0.3} Sr _{0.7} TiO ₃ and Ni/YSZ Bi-Layer SOFC Anode <i>M. A. Buccheri and J. M. Hill</i>	1551
Thermal Imaging of Solid Oxide Fuel Cell Anode Degradation with Dry and Wet Ethanol Fuel Flows M. B. Pomfret, D. Steinhurst, and J. Owrutsky	1563
Safe Operating Conditions to Prevent Damage in Ni-YSZ Anode Supported SOFC V. Roche, C. Roux, and M. Steil	1571
Impact of Ni on Accelerated Degradation of 8.5 Mol% Y ₂ O ₃ -Doped Zirconia A. Lefarth, B. Butz, H. Störmer, A. Utz, and D. Gerthsen	1581
Influence of Additive Oxides on Electrochemical Performance of Y-Doped SrTiO ₃ Anode in SOFCs <i>P. Puengjinda, H. Muroyama, T. Matsui, and K. Eguchi</i>	1587
Catalytic Activities and Electrochemical Properties of Y and Fe Co-Doped SrTiO ₃ -Based Composite Anodes for Solid Oxide Fuel Cells (SOFCs) <i>S. Yoon, Y. Kim, H. Hwang, M. Ji, and B. Choi</i>	1595
Ceramic Oxide Anode with Precipitated Catalytic Nanoparticles for Ethanol Fueled SOFC N. Monteiro, S. Nóbrega, and F. C. Fonseca	1601
Ab Initio Study of Activity and Coke-Tolerance of Ni/CeZrO ₂ Anodes of SOFC as a Function of Zirconia Concentration <i>M. Shishkin and T. Ziegler</i>	1611
Kinetic Modeling of Nickel Oxidation in SOFC Anodes J. Neidhardt, M. Henke, and W. G. Bessler	1621

xx

Evaluation of Porous Ni-YSZ Cermets with Ni content of 0-30 vol% As Insulating Substrates for Solid Oxide Fuel Cells Z. Wang, M. Mori, and T. Itoh	1631
Influence of Anode Thickness on Cell Performance in Internal Reforming Operation of SOFCs Y. Lee, H. Sumi, H. Muroyama, T. Matsui, and K. Eguchi	1641
Mesoporous NiO-CGO Obtained by Hard Template as High Surface Area Anode for IT-SOFC L. Almar, T. Andreu, A. Morata, and A. Tarancón	1647
Determination of Three Dimensional Microstructure Parameters from a Solid Oxide Ni/YSZ Electrode after Electrolysis Operation <i>P. S. Jørgensen and J. R. Bowen</i>	1655
Theoretical Study for the Sintering of Nickel Anode in Solid Oxide Fuel Cell K. Nakao, T. Ogura, T. Ishimoto, and M. Koyama	1661
Electrochemical Oxidation at SOFC Anodes: Comparison of Patterned Nickel Anodes and Nickel/8YSZ Cermet Anodes <i>A. Utz, J. Joos, A. Weber, and E. Ivers-Tiffée</i>	1669
Investigation of MgO Promoted NiO: SDC Anode Material for Intermediate Temperatures Solid Oxide Fuel Cells <i>M. Phongaksorn, A. Yan, M. Ismail, A. Ideris, E. Croiset, S. Corbin, and</i> <i>Y. Yoo</i>	1683
Synthesis and Characteristics of Nano-Ceria Supported Bimetallic Catalysts For S-Tolerant SOFCs J. Bozeman, A. Marruffo, I. Barney, A. Jackson, S. Mukhopadhyay, and H. Huang	1689
Reverse Cell Bias for the Prevention of Ni Oxidation during Air Exposure J. L. Young, V. Vedharathinam, and V. I. Birss	1697
Reaction Sites of Mixed Conductor Anodes in Solid Oxide Fuel Cells R. Kikuchi, T. Okamoto, K. Akamatsu, T. Sugawara, and S. Nakao	1707
Sulfur Poisoning of SOFCs:Dependence on Operational Parameters T. Yoshizumi, C. Uryu, T. Oshima, Y. Shiratori, K. Ito, and K. Sasaki	1717
Electrochemical Performance and H ₂ S Poisoning Study of Mo-Doped Ceria (CMO) SOFC Anodes <i>B. Mirfakhraei, V. I. Birss, V. Thangadurai, S. Paulson, K. E. Béré, and</i> <i>F. Gitzhofer</i>	1727

xxi

Study on Degradation of Solid Oxide Fuel Cell with Pure Ni Anode Z. Jiao, N. Shikazono, and N. Kasagie	1735
Elementary Kinetic Numerical Simulation of Electrochemical CO Oxidation on Ni/YSZ Pattern Anodes V. Yurkiv, A. Utz, A. Weber, E. Ivers-Tiffée, H. Volpp, and W. G. Bessler	1743
 Fuel Flexible Anode for Solid Oxide Fuel Cells: An Electrochemical and Catalytic Study M. Lo Faro, A. Stassi, G. Monforte, M. Minutoli, V. Antonucci, V. Modafferi, P. Frontera, C. Busacca, P. Antonucci, and A. Aricò 	1753
Key Issues in Processing Metal-Supported Proton Conducting Anodes for SOFCs Applications <i>E. Mercadelli, A. Gondolini, P. Pinasco, A. Sanson, S. Barison, and</i> <i>M. Fabrizio</i>	1761
Optimization of Solid Oxide Fuel Cell Ni-CGO Anode Porosity K. Tamm, I. Kivi, E. Anderson, P. Möller, G. Nurk, and E. Lust	1771
Fabrication of Direct Oxidation Solid Oxide Fuel Cell Anodes Using a NovelAtmospheric Plasma Spraying Technique<i>M. Cuglietta and O. Kesler</i>	1781
Development, Fabrication and Testing of Perovskite-Based Anodes for Tubular Solid Oxide Fuel Cells S. Babiniec, A. E. Richards, N. Faino, and N. Sullivan	1791
Analysis of Microscopic Anode Structure Effects on an Anode-Supported SOFC Including Knudsen Diffusion <i>M. Andersson, X. Lu, J. Yuan, and B. Sundén</i>	1799
Performances of Metal Particle-Dispersed Ceria Hydrogen Electrodes in Reversible SOFCs <i>H. Uchida, R. Nishida, M. Tatsuzawa, H. Nishino, K. Kakinuma, and</i> <i>M. Watanabe</i>	1811
Enhanced Performances of Ln ₂ NiO _{4+δ} / CGO Multilayered Anodes for High Temperature Steam Electrolysis (HTSE) <i>T. Ogier, F. Chauveau, J. Bassat, F. Mauvy, J. Grenier, J. Mougin, and</i> <i>M. Petitjean</i>	1817
Numerical Modeling of Nickel-Impregnated Porous YSZ-Supported Anodes and Comparison to Conventional Composite Ni-YSZ Electrodes <i>E. Hardjo, D. S. Monder, and K. Karan</i>	1823

xxii

Effect of Sm _{0.2} Ce _{0.8} O _{1.9} (SDC) for Direct Electrochemical Oxidation of	1833
Methane in Ni-Based Anode of Solid Oxide Fuel Cell	
J. Yun, S. Yoon, S. Park, H. Kim, and S. Nam	
Experimental Study of the Ohmic Resistance between the Interconnect and	1841
the Ni-CGO Cermet	
C. Magnière, S. di Iorio, and B. Morel	

Chapter 7 Cathode Materials, Processing and Performance

CeO ₂ Addition for Improving Electrochemical Behavior of La _{1-x} Sr _x MnO ₃ Cathodes Sintered at High Temperature J. Wiff, M. Suzuki, and S. Suda	1853
High Performance LSM-ESB Cathode on ESB Electrolyte for Low to Intermediate Temperature Solid Oxide Fuel Cells <i>K. Lee, D. Jung, H. Yoon, M. Camaratta, N. Sexson, and E. D. Wachsman</i>	1861
Quantification of Microstructural Change at the Interface between $(La,Sr)MnO_{3+\delta}$ Cathode and YSZ Electrolyte Upon Discharge Operation <i>T. Matsui, Y. Mikami, H. Muroyama, and K. Eguchi</i>	1871
 Oxygen Nonstoichiometry of Perovskite-type La_{0.6}Sr_{0.4}Co_{1-y}Fe_yO_{3-δ} (y=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) SOFC Cathode Materials <i>M. Kuhn, Y. Fukuda, S. Hashimoto, K. Sato, K. Yashiro, and J. Mizusaki</i> 	1881
Oxygen Non Stoichiometry in Nanocrystalline La _{0.5} Sr _{0.5} 5CoO _{3-x} Thin Films S. Wang, S. Cho, H. Wang, and A. Jacobson	1891
Electrical Conductivity and Oxygen Diffusivity of Perovskite-Type Solid Solution La _{0.6} Sr _{0.4} Co _{1-y} Fe _y O _{3-δ} (y=0.2, 0.4, 0.5, 0.6, 0.8) <i>K. Yashiro, I. Nakano, M. Kuhn, S. Hashimoto, K. Sato, and J. Mizusaki</i>	1899
Microstructure of Sol-Gel Derived Nanoscaled La _{0.6} Sr _{0.4} CoO _{3-δ} Cathodes for Intermediate-Temperature SOFCs L. Dieterle, P. Bockstaller, D. Gerthsen, J. Hayd, E. Ivers-Tiffée, U. Guntow, and C. Kübel	1909
Sm(Sr)CoO ₃ Nano Cone Cathode and Ni-Fe Metal Support for High Power Density and Reliability <i>T. Ishihara, Y. Ju, T. Inagaki, and S. Ida</i>	1919

xxiii

Performance of Metal-Supported Composite and Single-Phase Cathodes Based on LSCF and SSC J. Harris and O. Kesler	1927
Low Temperature Preparation of LaNi _{1-x} Fe _x O ₃ as New Cathode Material for SOFC - Advantage of Liquid Phase Mixing Method - <i>E. Niwa, C. Uematsu, E. Miyashita, T. Ohzeki, and T. Hashimoto</i>	1935
Doped / Undoped Ceria Buffer Layers for Improved LT SOFC Performances with Pr ₂ NiO _{4+δ} Cathode J. Bassat, D. Mesguich, C. Ferchaud, Y. Zhang-Steenwinkel, F. van Berkel, C. Aymonier, J. Watkins, and J. Grenier	1945
Towards a Fundamental Understanding of the Oxygen Reduction Mechanism <i>E. D. Wachsman and E. N. Armstrong</i>	1955
Performance Analysis and Development Strategies for Solid Oxide Fuel Cells E. Ivers-Tiffée, J. Hayd, D. Klotz, A. Leonide, F. Han, and A. Weber	1965
Surface Cation Segregation and its Effect on the Oxygen Reduction Reaction on Mixed Conducting Electrodes Investigated by ToF-SIMS and ICP-OES <i>M. Kubicek, A. Limbeck, T. Frömling, H. Hutter, and J. Fleig</i>	1975
On the Thermodynamic Stability and the Kinetic Activity of SOFC Materials <i>X. Zhou, J. Templeton, and J. Stevenson</i>	1985
Viable AC Two-Probe Impedance Spectroscopy Based on Spatially-Limited Contact Probe for SOFC Cathode J. Lee, H. Ji, H. Kim, J. Son, and J. Hwang	1995
Multi-Scale Assessment of Cr Contamination Levels in SOFC Cathode Environment J. Schuler, A. Schuler, Z. Wuillemin, A. Hessler-Wyser, C. Ludwig, and J. Van Herle	2001
Degradation of Solid Oxide Fuel Cell Performance by Cr-Poisoning M. Kornely, A. Neumann, N. Menzler, A. Weber, and E. Ivers-Tiffée	2009
In-situ Investigation of the Chromium Induced Degradation of the Oxygen Exchange Kinetics of the IT-SOFC Cathode Material La _{0.6} Sr _{0.4} CoO _{3-δ} <i>E. Bucher, M. Yang, and W. Sitte</i>	2019
Is Chromium Poisoning of LSM Cathodes Avoidable L. de Haart, A. Neumann, N. Menzler, and I. Vinke	2027
Impact of the Volatile Cr-Species' Attack on the Conductivity of La(Ni,Fe)O ₃ <i>M. K. Stodolny, B. Boukamp, and F. van Berkel</i> <i>xxiv</i>	2035

rr	.1	12
лл	ı	v

Stability and Performance of LSCF-Infiltrated SOFC Cathodes: Effect of Nano-Particle Coarsening<i>M. Shah, G. Hughes, P. W. Voorhees, and S. A. Barnett</i>	2045
Microstructural Aspects on the Performance of LSCF Cathodes for SOFCs <i>R. Costa, Z. Ilhan, and A. Ansar</i>	2055
Microstructural Effects on the Oxygen Exchange Kinetics of La _{0.7} Sr _{0.3} MnO ₃ Thin Films <i>L. Yan, B. Kavaipatti, K. Chang, H. You, and P. Salvador</i>	2063
The Structural Disorder and Lattice Stability of (Ba,Sr)(Co,Fe)O ₃ Complex Perovskites <i>M. M. Kuklja, Y. Mastrikov, S. Rashkeev, and E. Kotomin</i>	2077
Systematic Studies of the Cathode-Electrolyte Interface in SOFC Cathodes Prepared by Infiltration <i>R. Küngas, J. Vohs, and R. Gorte</i>	2085
Strain Effects on the Surface Chemistry of La _{0.7} Sr _{0.3} MnO ₃ J. Han, H. Jalili, Y. Kuru, Z. Cai, and B. Yildiz	2097
The Effects of Stress on the Defect and Electronic Properties of Mixed Ionic Electronic Conductors O. Comets and P. W. Voorhees	2105
Strain Effects on Defect Chemistry in Epitaxial Perovskite Thin Films forSolid Oxide Fuel Cells<i>M. Gadre, Y. Lee, N. Swaminathan, and D. Morgan</i>	2113
Mechanistic Interpretation of the Oxygen Reduction Kinetics of La _{0.85} Ca _{0.15} MnO ₃ Cathode L. Miara, U. Pal, and S. Gopalan	2119
Investigation of Cathode Kinetics in SOFC: Model Thin Film SrTi _{1-x} Fe _x O _{3-δ} Mixed Conducting Oxides <i>W. Jung and H. L. Tuller</i>	2129
Ln(Sr,Ca) ₃ (Fe,Co) ₃ O ₁₀ Intergrowth Oxide Cathodes for Solid Oxide Fuel Cells J. Kim, Y. Kim, K. Lee, and A. Manthiram	2137
In situ Sinterable Cathode for Solid Oxide Fuel Cells H. Kim, Y. Park, J. Kim, and H. Jin	2147

xxv

Aerosol Jet Printing and Microstructure of SOFC Electrolyte and Cathode Layers	2151
A. M. Sukeshini, P. Gardner, F. Meisenkothen, T. Jenkins, R. Miller, M. Rottmayer, and T. L. Reitz	
Effect of Gel Viscosity on the LSM Films Supported on Metallic Substrate L. Conceição, N. Ribeiro, and M. M. Souza	2161
Nanosized Ceria Modified GdBaCo ₂ O _{5+δ} Cathode for IT-SOFC B. Wei, Z. Lü, D. Jia, L. He, X. Huang, Y. Zhang, and W. Su	2169
Pr Doped Ceria and La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O ₃ Composite Cathode for Solid Oxide Fuel Cell <i>M. Chen and S. Cheng</i>	2175
Effect of the Strontium Content on the Electrochemical Performance of the Perovskite-Type Pr _{1-x} Sr _x Fe _{0.8} Co _{0.2} O ₃ Oxides <i>R. Pinedo, I. Ruiz de Larramendi, D. Jimenez de Aberasturi,</i> <i>J. Ruiz de Larramendi, M. Arriortua, and T. Rojo</i>	2183
Cooperative Investigations on Degradation of Cathode Materials in Segment-In-Series Cells by MHI H. Yokokawa, H. Kishimoto, K. Yamaji, T. Horita, T. Watanabe, T. Yamamoto, K. Eguchi, T. Matsui, K. Sasaki, Y. Shiratori, T. Kawada, K. Sato, T. Hashida, A. Unemoto, T. Kabata, and K. Tomida	2191
Nanofiber Scaffold for Solid Oxide Fuel Cell Cathode M. Zhi, N. Mariani, K. Gerdes, and N. Wu	2201
Silver Nanomesh as a Cathode for Solid Oxide Fuel Cells J. Shim, Y. Kim, J. Park, and F. B. Prinz	2209
Effect of Polarization on Platinum Deposition at LSM/YSZ Interfaces K. Yamaji, T. Shimonosono, H. Kishimoto, M. E. Brito, T. Horita, D. Cho, M. Izuki, F. Wang, and H. Yokokawa	2213
Monitoring Active and Resistive Zones of SOFC Cathodes by Voltage Driven Tracer Incorporation J. Fleig, A. Opitz, A. Schintlmeister, M. Kubicek, and H. Hutter	2217
Development of Purification Methods of Rare Earth Compounds for Preparation of More Cost Effective Solid Oxide Fuel Cell Cathodes <i>R. Kanarbik, P. Möller, I. Kivi, K. Tamm, and E. Lust</i>	2227
Nanostructured Composite Cathodes by Suspension Plasma Spraying for SOFC Applications D. Soysal, A. Ansar, Z. Ilhan, and R. Costa	2233

xxvi

Study of $Ca_{3-x}Bi_xCo_4O_{9+\delta}(0 \le x \{less than or equal to\} 0.5)$ as Novel Cathodes for IT-SOFCs J. Zou, J. Park, H. Yoon, S. Choi, and J. Chung	2243
 Material Stability and Cation Transport of La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-δ} in SOFC Cathodic Conditions <i>M. Oh, A. Unemoto, K. Amezawa, and T. Kawada</i> 	2249
Influence of SO ₂ on the Long-Term Durability of SOFC Cathodes R. Liu, S. Taniguchi, Y. Shiratori, K. Ito, and K. Sasaki	2255
Detailed Electrochemical Analysis of High-Performance Nanoscaled La _{0.6} Sr _{0.4} CoO _{3-δ} Thin Film Cathodes J. Hayd, U. Guntow, and E. Ivers-Tiffée	2261
 Electrode and Electrolyte Layers for Solid Oxide Fuel Cells Applied by Physical Vapor Deposition (PVD) S. Uhlenbruck, R. Nédélec, D. Sebold, H. Buchkremer, and D. Stöver 	2275
Comparison of Electrochemical Performances of Electrosprayed LSCF Cathode Films for IT-SOFCs for Different Morphologies and Cobalt Contents	2283
 D. Marinha, L. Dessemond, and E. Djurado Fabrication and Characterization of La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-δ}-Yttria Stabilized Zirconia Composites Cathode Prepared by Infiltration Method M. Han, Z. Liu, and J. Qian 	2295
Exploring Mixed Protonic/Electronic Conducting Oxides as Cathode Materials for Intermediate Temperature SOFCs Based on Proton Conducting Electrolytes <i>E. Fabbri, I. Markus, L. Bi, D. Pergolesi, and E. Traversa</i>	2305
Investigation of the Particle Size Change of a La(Ni, Fe)O ₃ as a Cathode Y. Yoshida, R. Chiba, T. Komatsu, M. Yokoo, K. Hayashi, H. Orui, and H. Arai	2313
Simple Infiltrated Microstructure Polarization Loss Estimation (SIMPLE) Model Predictions of Today and Tomorrow's Nano-Composite SOFC Cathodes <i>L. Wang and J. D. Nicholas</i>	2321
Nanocomposite Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells <i>T. Kharlamova, S. Pavlova, V. Sadykov, Y. Bespalko, T. A. Krieger,</i> <i>V. Pelipenko, V. Belyaev, V. Muzykantov, G. Alikina, Y. Okhlupin,</i>	2331

N. Uvarov, and A. Smirnova

xxvii

Microstructural Aspects of Cation Interdiffusion Across the LSCF/GDC Interface <i>M. E. Brito, M. Izuki, K. Yamaji, H. Kishimoto, T. Shimonosono,</i> <i>T. Horita, and H. Yokokawa</i>	2341
 Influence of Cathode Thickness on the Oxygen Reduction Kinetics at the Intermediate Temperature SOFC Cathodes I. Kivi, I. Drovtar, E. Anderson, J. Aruväli, K. Tamm, G. Nurk, P. Möller, M. Vestli, R. Kanarbik, and E. Lust 	2349
Detailed Microstructure Analysis and 3D Simulations of Porous Electrodes J. Joos, T. Carraro, M. Ender, B. Rüger, A. Weber, and E. Ivers-Tiffée	2357
Firing Temperature Effect on 3D Microstructure and Performance of LSM-YSZ Composite SOFC Cathodes J. Cronin, K. Muangnapoh, Z. Patterson, K. Yakal-Kremski, and S. A. Barnett	2369
Characterization of SOFC Cathodes Prepared by Pulse Laser Deposition F. Napolitano, L. Baqué, S. Cho, Q. Su, H. Wang, J. R. Casanova, D. G. Lamas, A. L. Soldati, and A. Serquis	2379
Preparation of Mesoporous La _{0.8} Sr _{0.2} MnO ₃ Infiltrated Coatings in Porous SOFC Cathodes Using Evaporation-Induced Self-Assembly Methods <i>R. Chao, J. Kitchin, K. Gerdes, E. Sabolsky, and P. Salvador</i>	2387
Microstructural Control of Composite Cathode by Wetting Nature of Infiltrated Solutions S. Lee, N. Miller, and A. Manivannan	2401
Chemical, Electronic and Nanostructure Dynamics on Sr(Ti _{1-x} Fe _x)O ₃ Thin-Film Surfaces at High Temperatures <i>Y. Chen, W. Jung, Y. Kuru, H. L. Tuller, and B. Yildiz</i>	2409
Comparison of X-ray Nanotomography and FIB-SEM in Quantifying the Composite LSM/YSZ SOFC Cathode Microstructure G. Nelson, W. Harris, J. Lombardo, J. Izzo, W. K. Chiu, P. Tanasini, M. Cantoni, J. Van Herle, C. Comninellis, J. Andrews, Y. Liu, P. Pianetta, and Y. Chu	2417
Potential and Limitation of Application of Pulsed Laser Deposited Nano-Structure LSC Thin Film Cathode to YSZ Electrolyte SOFC J. Son, D. Myung, J. Hwang, H. Lee, and J. Lee	2423

xxviii

Mechanical Properties of La _{0.6} Sr _{0.4} Co _{1-y} Fe _y O _{3-δ} under Various Temperatures	2429
and Oxygen Partial Pressures	

Y. Kimura, T. Kushi, S. Hashimoto, S. Watanabe, K. Amezawa, T. Kawada, Y. Fukuda, A. Unemoto, K. Sato, K. Yashiro, J. Mizusaki, and T. Hashida

Chapter 8 Interconnection, Seal and Contact Materials

Development of New Alloys for SOFC Interconnects with Excellent Oxidation Resistance and Reduced Cr-Evaporation <i>N. Yasuda, T. Uehara, S. Tanaka, and K. Yamamura</i>	2437
Low-Chromium Alloys for Solid Oxide Fuel Cell Interconnects J. Fergus and Y. Zhao	2447
Oxide Modification by Alloying Molybdenum to Fe-22Cr-0.5Mn for Solid Oxide Fuel Cell Interconnect D. Yun, H. Seo, J. Jun, J. Lee, D. Kim, and K. Kim	2455
High Temperature Oxidation of Plastically Deformed Ferritic Interconnect Steel U. Bexell, M. Olsson, and M. W. Lundberg	2463
Oxide Protective Coatings for Solid Oxide Fuel Cell Interconnects M. Seabaugh, S. Ibanez, M. Beachy, M. Day, and L. Thrun	2471
On Potential Application of Coated Ferritic Stainless Steel Grades K41X and K44X in SOFC/HTE Interconnects <i>P. O. Santacreu, P. Girardon, M. Zahid, J. Van Herle, A. Hessler-Wyser, J. Mougin, and V. Shemet</i>	2481
Electrodeposition Of CoMn Onto Stainless Steels Interconnects For Increased Lifetimes In SOFCs <i>T. D. Hall, H. McCrabb, J. Wu, H. Zhang, X. Liu, and J. Taylor</i>	2489
Multifunctional Nano-Coatings for SOFC Interconnects J. Froitzheim and J. Svensson	2503
Synthesis and Characterization of Nanocrystalline MnCo ₂ O _{4-δ} Spinel for Protective Coating Application in SOFC <i>A. Das Sharma, J. Mukhopadhyay, and R. N. Basu</i>	2509

xxix

Characteristics of the Sintered Phlogopite Mica/SiO ₂ -B ₂ O ₃ -Al ₂ O ₃ -BaO-La ₂ O ₃ Glass Blends <i>C. Liu, K. Lin, and R. Lee</i>	2519
Analysis of Joint Strength between a Metallic Interconnect and Glass-Ceramic Sealant for Use in Solid Oxide Fuel Cells <i>C. Lin, J. Chen, L. Chiang, and S. Wu</i>	2527
Characterization of Sr and Ba-Doped LaCrO ₃ Powders Synthesized by EDTA Method <i>A. Silva, A. Rocco, and M. M. Souza</i>	2537
Lanthanum Chromite Based Ceramic and Glass Composite Interconnects for Solid Oxide Fuel Cells S. Lee, S. Pi, J. Lee, T. Lim, S. Park, R. Song, C. Park, and D. Shin	2547
Synthesis and Electrical Properties of Strontium Titanate-Based Materials forSolid Oxide Fuel CellsB. Park, J. Lee, S. Lee, T. Lim, S. Park, R. Song, and D. Shin	2553
Anomalous Sintering Behavior of $(Sr_{0.7}La_{0.3})_{1-x}TiO_{3+\delta}$ Perovskites $(0 \le x \le 0.12)$ Synthesized by the Pechini Method <i>M. Mori and T. Itoh</i>	2561
First 3D-Modeling of Proton-Conducting SOFC's Interconnect S. Sailler, J. Deseure, O. Doche, and Y. Bultel	2571
High-Temperature Stress-Rupture Properties of a Ferritic Steel for Solid Oxide Fuel Cell Interconnect <i>Y. Chiu and C. Lin</i>	2581
Oxidation Resistance and Mechanical Properties of ZMG232L and Improved Fe-Cr Ferritic Alloys for SOFC Interconnects <i>T. Uehara, N. Yasuda, S. Tanaka, and K. Yamamura</i>	2591
Characterization of Vaporization Rates on SOFC Interconnect Alloys M. Casteel, D. Lewis, A. Renko, and P. Willette	2601
Method for Measuring Chromium Evaporation from SOFC Balance-of-Plant Components O. Thomann, M. H. Pihlatie, J. Schuler, O. Himanen, and J. Kiviaho	2609
Metallic Seals: A Possible Alternative Solution for High Temperature Steam Electrolysis	2617

M. Reytier, L. Bruguière, M. Lefrancois, and J. Besson

xxx

Cathode Contact Materials for Solid Oxide Fuel Cells M. Tucker, L. Cheng, and L. DeJonghe	2625
SOFC Module Material Development at Fuel Cell Energy P. Huang and H. Ghezel-Ayagh	2631

Chapter 9 Operation on Alternative Fuels

Application of Biofuels to Solid Oxide Fuel Cell Y. Shiratori, T. Tran, Y. Takahashi, and K. Sasaki	2641
Biogas Fuel Reforming for Solid Oxide Fuel Cells D. M. Murphy, A. E. Richards, A. M. Colclasure, W. Rosensteel, and N. Sullivan	2653
SOFC Power Generation from Biogas: Improved System Efficiency with Combined Dry and Steam Reforming <i>R. Dietrich, A. Lindermeir, J. Oelze, C. Spieker, C. Spitta, and M. Steffen</i>	2669
Biomass Conversion in a Solid Oxide Fuel Cell B. R. Alexander, R. Mitchell, and T. M. Gür	2685
Sorbents for BioFueled SOFCs G. Alptekin, A. Jayaraman, and M. Schaefer	2693
Influence of Operation Conditions on Carbon Deposition in SOFCs Fuelled by Tar-Containing Biosyngas <i>M. Liu, M. G. Millan-Agorio, P. Aravind, and N. Brandon</i>	2701
Transient Operation Effects of SOFCs Driven with Tar Loaded Synthesis Gas <i>M. Hauth, T. Kienberger, and J. Karl</i>	2713
Liquid Tin-Lead Anode Solid Oxide Fuel Cell Fueled by Coal M. LaBarbera, M. Fedkin, and S. Lvov	2725
Startup Characteristics of Propane-Fueled Solid Oxide Fuel Cell Hot Zones Y. Du, D. Cui, K. Reifsnider, and F. Chen	2735
An Electrochemical Model of Anode Supported Microtubular SOFCs Powered by Ammonia J. Y. Huo and X. Zhou	2745

xxxi

Direct-DME SOFC for Intermediate Operation Temperature Using Proton Conductor as the Electrolyte <i>K. Takeuchi, R. Tai, K. Ui, K. Fujimoto, S. Ito, H. Koyanaka, and</i> <i>N. Koura</i>	2755
Electrocatalysis and Reforming in Oscillatory Reaction of Methane on a Pt-LSC/Ceria Anode for Solid Oxide Fuel Cells V. Medvedev, S. B. Adler, and E. M. Stuve	2761
 Design and Testing of Structured Catalysts for Internal Reforming of CH₄ in Intermediate Temperature Solid Oxide Fuel Cells (IT SOFC) A. Smirnova, V. Sadykov, N. Mezentseva, R. Bunina, V. V. Pilipenko, G. Alikina, T. A. Krieger, L. N. Bobrova, O. L. Smorygo, F. van Berkel, and B. Rietveld 	2771
Towards Understanding the Hydrocarbon Oxidation Activity of Oxides for Direct Hydrocarbon SOFC Anodes S. McIntosh and M. van den Bossche	2781
In Situ Optical Studies of Solid Oxide Fuel Cells Operating With Dry and Humidified Oxygenated Fuels <i>B. Eigenbrodt, J. Kirtley, and R. A. Walker</i>	2789
Effect of Hydrogen Sulfide on Electrochemical Oxidation of Syngas for SOFC Applications <i>M. Roushanafshar, J. Luo, K. Chuang, and A. Sanger</i>	2799
Impurity Poisoning of SOFCs K. Sasaki, K. Haga, T. Yoshizumi, D. Minematsu, E. Yuki, R. Liu, C. Uryu, T. Oshima, S. Taniguchi, Y. Shiratori, and K. Ito	2805
Analysis of Fuel Options for SOFC-Based Power Systems in Undersea Vehicles <i>A. Burke and L. Carreiro</i>	2815
Non-Thermal Plasma Reformation of Liquid Fuels J. Hartvigsen, S. Elangovan, M. Hollist, P. Czernichowski, and L. Frost	2825
Ceramic Microchannel Heat Exchanger and Reactor for SOFC Applications D. M. Murphy, B. Rosen, J. Blasi, N. Sullivan, R. J. Kee, M. Hartmann, and N. E. McGuire	2835
Studies on Direct Ethanol Use in SOFCs G. P. Corre and J. T. Irvine	2845
Low Temperature Direct Methanol Fuel Cell with YSZ Electrolyte J. Komadina, Y. Kim, J. Park, T. M. Gür, S. Kang, and F. B. Prinz	2855

xxxii

Solid Oxide Fuel (Cell Fueled by Diesel	Reformate and Anae	robic Digester	2867
Gas				
14 7 0 1	1 C T 11 C 17 TT	W G1 G G	10.7	

M. LaBarbera, M. Fedkin, X. Wang, X. Chao, C. Song, and S. Lvov

Chapter 10 Electrolysis and Other Applications

Materials for Solid Oxide Electrolysis Cells S. Elangovan, J. Hartvigsen, D. Larsen, I. Bay, and F. Zhao	2875
Experimentally Validated Simulations of Undoped Ceria Electrodes for H ₂ Oxidation and H ₂ O Electrolysis in Solid Oxide Electrochemical Cells S. C. DeCaluwe and G. Jackson	2883
Development of Reversible Solid Oxide Fuel Cells (RSOFCs)and Stacks N. Q. Minh	2897
 Performance and Durability of High Temperature Steam Electrolysis: From the Single Cell to Short-Stack Scale M. Petitjean, M. Reytier, A. Chatroux, L. Bruguière, A. Mansuy, H. Sassoulas, S. di Iorio, B. Morel, and J. Mougin 	2905
Long Term Testing of Short Stacks with Solid Oxide Cells for Water Electrolysis J. Schefold, A. Brisse, M. Zahid, J. Ouweltjes, and J. Nielsen	2915
Hydrogen and Power by Fuel-Assisted Electrolysis Using Solid Oxide Fuel Cells <i>G. Tao, B. Butler, and A. Virkar</i>	2929
Production of Sustainable Fuels by Means of Solid Oxide Electrolysis J. B. Hansen, N. Christiansen, and J. Nielsen	2941
High-Temperature CO ₂ and H ₂ O Electrolysis with an Electrolyte-Supported Solid Oxide Cell <i>Q. Fu, J. Dailly, A. Brisse, and M. Zahid</i>	2949
Hydrogen Production by High Temperature Electrolysis Using Solid Oxide Electrolyzer Cells <i>S. Kim, J. Yu, D. Seo, I. Han, and S. Woo</i>	2957
Electrochemical Analysis of Biogas Fueled Anode Supported SOFC A. Leonide, A. Weber, and E. Ivers-Tiffée	2961

xxxiii

A Proposed Method for High Efficiency Electrical Energy Storage Using Solid Oxide Cells	
D. M. Bierschenk, J. R. Wilson, E. Miller, E. Dutton, and S. A. Barnett	
Development of Tubular Solid Oxide Electrolysis Stacks for Hydrogen Production	2979
T. Kato, K. Sato, T. Honda, A. Negishi, Y. Tanaka, A. Momma, K. Kato, and Y. Iimura	
Novel Micro-Tubular High Temperature Solid Oxide Electrolysis Cells C. Jin, C. Yang, and F. Chen	2987
Model-Based Evaluation of the Production of Pure Oxygen through SOFC/SOEC Integration <i>M. A. Taher, C. Adjiman, P. Iora, P. Chiesa, and N. Brandon</i>	2997

Author Index

xxxiv