2016 International Conference on Electrical Power and Energy Systems (ICEPES 2016) Bhopal, India 14 – 16 December 2016 **IEEE Catalog Number: ISBN:** CFP16TPF-POD 978-1-5090-2477-3 ## Copyright © 2016 by the Institute of Electrical and Electronics Engineers, Inc All Rights Reserved Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved. *** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version. IEEE Catalog Number: CFP16TPF-POD ISBN (Print-On-Demand): 978-1-5090-2477-3 ISBN (Online): 978-1-5090-2476-6 ## **Additional Copies of This Publication Are Available From:** Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com ## **Paper Presentation** | Paper | Paper Title | Authors | Affiliation | |--------|---|---|--| | 4
4 | Enhancement of Radiation Pattern for Linear Antenna Array Using Flower Pollination Algorithm1 | Surendra Kumar Bairwa, Pawan
Kumar and Arpit Kumar
Baranwal | Dept. of Electronics & Communication Engineering, Engineering College Bikaner, Bikaner, India | | 12 | Torque Ripple Reduction of DTC IM drive using Artificial Intelligence5 | Naveen Goel, R. N. Patel and
Saji Chacko | Dept. of Electrical & Electronics
SSGI, SSTC Bhilai, India | | 13 | Physical Design and Modelling of Boost
Converter for Maximum Power Point
Tracking in Solar PV systems10 | Pooja Sahu, Deepak Verma and
S. Nema | Department of Electrical
Engineering Maulana Azad
National Institute of Technology,
Bhopal, MP, India | | 14 | Automatic Solar Tracking System using DELTA PLC16 | Betha Karthik Sri Vastav, Savita
Nema, Pankaj Swarnkar and
Doppllapudi Rajesh | Department of Electrical
Engineering, Maulana Azad
National Institute of Technology,
Bhopal (M.P.), India | | 15 | Calculation of THD in Vector Controlled IGBT fed Doubly FED Induction Generator22 | Shravni Mathur, Ritika Verma
and Bhagyashree Sharma | Department of Electrical & Electronics Bhopal (MP), India | | 17 | Performance evaluation of Uttarakhand
Electric Utility Data using Slack Based
Measure and Two-Stage DEA Modelling27 | Sonal Singhal, Shrey Jain, Nithin
B, Bhawna Rawat and H. O.
Gupta | Shiv Nadar University, Electronics
and Communication Department
Dadri, Gautam Buddha Nagar,
India | | 18 | Real Power Loss Reduction in Distribution Network through Distributed Generation Integration by Implementing SPSO35 | Sunaina Saini and Gagandeep
Kaur | Department of Electrical
Engineering I. K. Gujral Punjab
Technical University Jalandhar,
India | | 21 | Elevated Frequency Testing of Ultra High
Voltage Shunt Reactors with Advanced
Test Setup41 | Ekta Oswal, Santosh C. Vora, J.
Padhi and A. K. Singh | Nirma University, Ahmedabad,
India | | 25 | Quasi-Z-Source Inverter Based PMSG
Wind Generation System With Pitch
Angle Control46 | Ankit Shrivastava, Hitesh M.
Karkar and Suryaprakash Singh | Dept. of Electrical Engg., AITS,
Rajkot, India | | 27 | A Utility Initiative based Method for
Demand Side Management and Loss
Reduction in a Radial Distribution
Network Containing Voltage Regulated
Loads52 | Baidyanath Bag and Tripta
Thakur | Department of Electrical
Engineering National Institute of
Technology Kurukshetra,
Kurukshetra, India | | 30 | Wavelet Based Image Enhancement Using Adaptive Fusion Methodology58 | Manisha Turkar and Nitin S.
Ambatkar | Dept. of E&TC, Priyadarshini
College of Engineering Nagpur,
India | | 35 | Changes & Challenges in Smart Grid towards Smarter Grid62 | Alok Jain and Rahul Mishra | Department of Electrical
Engineering, Indian Institute of
Technology (BHU), Varanasi,
India | | 36 | A Novel Methodology for Power
Transformer Differential Protection by
incorporating Artificial Neural Network68 | Nimish Bhatt, O. P. Rahi and
Nitish Bharadwaj | Department of Electrical
Engineering NIT Hamirpur H.P,
India | | 41 | Overview of Different Control Schemes used for Controlling of DC-DC Converters75 | Nishtha Bajoria, Pragya Sahu, R.
K. Nema and Savita Nema | Department of Electrical
Engineering MANIT, Bhopal,
India | | 44 | Performance analysis of improving stability using tuned PID and Hybrid controllers83 | Mahesh Singh, Kushal Brahmin
and D. D. Neema | Deptt. of EEE, SSTC, SSGI, Bhilai,
India | | 45 | Voltage Compensation using PSO-PI
Controlled STATCOM in a DFIG-Based
Grid-Connected Wind Energy System88 | Bineeta Mukhopadhyay and
Rajib Kumar Mandal | Department of Electrical
Engineering National Institute of
Technology Patna, India | | 50 | Multimachine Power System Stabilizer
Tuning using Harmony Search | Dhanraj Chitara, K. R. Niazi, Anil
Swarnkar and Nikhil Gupta | Department of Electrical
Engineering, Malaviya National | |----|--|--|--| | | Algorithm94 | | Institute of Technology, Jaipur,
India | | 51 | AC-DC converter power modules of a solid state modular high voltage DC power supply100 | Manmath Kumar Badapanda,
Rinki Upadhyay, Akhilesh
Tripathi, Rajeev Tyagi and
Mahendra Lad | Department of Atomic Energy,
Raja Ramanna Centre for
Advanced Technology, Indore,
India | | 52 | Simulation of dynamic voltage restorer (DVR) to mitigate voltage sag during three-phase fault105 | Rakeshwri Pal and Sushma
Gupta | Department of Electrical
Engineering MANIT, Bhopal,
Madhya Pradesh, India | | 53 | Deflection and Stresses of Effective
Micro-cantilever Beam designs under
low mass loading111 | Deep Kishore Parsediya | Madhav Institute of Technology
and Science, Race Course Road,
Gole Ka Mandir, Gwalior, India | | 54 | Comparison of Conventional PID
Controller with Sliding Mode Controller
for a 2-Link Robotic Manipulator115 | Surabhi Singh, Mohd. Salim
Qureshi and Pankaj Swarnkar | Electrical Engineering Department Maulana Azad National Institute of Technology, Bhopal, India | | 58 | High Power Pulsed Current Laser Diode Driver120 | Ashutosh Sharma, C. B. Panwar and R. Arya | Solid State Laser Electronics
Section, Raja Ramanna Center of
Advanced Technology, Indore,
India | | 60 | Integration of PV and Battery System to
the Grid with Power Quality
Improvement Features using
Bidirectional AC-DC Converter127 | P Venkata Subramanyam and C
Vyjayanthi | Department of Electrical and
Electronics Engineering, National
Institute of Technology, Goa,
India | | 63 | All Weather Solar Cell- A new trend of design of Solar Cell133 | Kirti Vibhute and Ramakant
Shukla | Department of EEE, Shri Dadaji
Institute of Technology &
Science, Khandwa, India | | 65 | Neuro Fuzzy Based & Controller for Doubly FED Induction Generator with Wind Turbine139 | K. Pandu Ranga, G. Durga
Sukumar, B. Pakkiraiah and M.
Subba Rao | Department of Electrical and
Electronics Engineering, Vignan's
Foundation for Science
Technology and Research
University, Guntur, A.P, India | | 66 | Reduction of Torque Ripples in 3-level
Inverter fed PMSM Drive based on
Instantaneous Voltage Control
Technique145 | Raj Kumar K., Nithin K. and
Vinay Kumar T. | Electrical Engg. Dept., NIT
Warangal, India | | 67 | HIF Detection using Wavelet Trasform,
Travelling Wave and Support Vector
Machine151 | Sandeep Bhongade and Supriya
Golhani | S G S Institute of Technology & Science, Indore (MP), India | | 68 | Mathematical Modeling and
Performance Analysis of MPPT based
Solar PV System157 | Hemant Patel, Manju Gupta and
Aashish Kumar Bohre | Department of Electrical and
Electronics Engineering, Oriental
Institute of Science and
Technology, Bhopal, India | | 69 | Modified Instantaneous p-q Theory for
Single Phase DVR for Mitigation of
Voltage Sag in case of Nonlinear Load163 | Dhiraj N. Katole, M. B.
Daigavane, S. P. Gawande and
Prema Daigavane | Electrical Engg. Dept., G.H.R.C.E.,
Nagpur, India | | 70 | Fuzzy Logic Control based Electronic
Load Controller for Self Excited
Induction Generator169 | Eshani Mishra and Sachin Tiwari | Department of Electrical and
Electronics Engineering, Oriental
Institute of Science and
Technology, Bhopal, India | | 71 | Roof Top Photovoltaic Grid Integration:
Utility Approach175 | Ashutosh V. Pailwan, Indranil
Chatterjee and K. Rajamani | Reliance Energy Ltd, Mumbai,
India | | 73 | Performance of Wind Farm distribution system under Balanced and Unbalanced Condition with SVC & STATCOM182 | Satyadharma Bharti, Sanjay
Dewangan, and Salik Ram | Department of Electrical
Engineering, Rungta College of
Engg & Tech., Bhilai, India | | 77 | Analysis of Substation Energy using Conservation Voltage Reduction in Distribution System188 | Saran Satsangi and Ganesh Balu
Kumbhar | Department of Electrical
Engineering, Indian Institute of
Technology Roorkee, Roorkee,
India | | 81 | Adaptive Artificial Neural Network Based
Control Strategy for Shunt Active Power
Filter194 | Ravinder Kumar, Pradyumn
Chaturvedi, Hari Om Bansal and
Pawan K. Ajmera | Department of Electrical and
Electronics Engineering, Birla
Institute of Technology and
Science, Pilani, India | |-----|---|--|---| | 83 | Simulation Model of Three Phase
Dynamic Voltage Restorer for Voltage
Compensation200 | Geeta V. Awad and S. D. Jawale | Electrical Engineering MGM's
JNEC Aurangabad Aurangabad,
India | | 87 | Tilt Angle Calculation for Installation of
PV Systems for Mountainous Regions of
Himachal Pradesh India205 | Amit Kumar Yadav, Hasmat
Malik and S. S. Chandel | Electrical & Electronics Engineering Department, National Institute of Technology, South Sikkim, Sikkim, India | | 88 | Comparative Analysis of PI & Fuzzy Logic
Controller Based Induction Motor Drive210 | Yugal Kishor Sahu, Kahkashan
Quraishi, Soma rajwade and
Prashant Choudhary | Department of Electrical
Engineering, R.C.E.T., Bhilai, India | | 89 | An Improved Interline Unified Power Quality Conditioner with FLC for Compensation of Voltage and Current Distortions in Adjacent Feeders215 | K. Neha and K. Hemalata | Dept. of EEE, RSRRCET, Sanjay
Rungta Group of Institutions,
Kohka, Bhilai, India | | 91 | Respiratory Signal Analysis using PCA, FFT and ARTFA221 | Varun Gupta and Monika Mittal | K.I.E.T, Muradnagar, Ghaziabad,
U.P, India | | 93 | Service Restoration in Distribution
System Using Binary Shuffled Frog
Leaping Algorithm226 | Ishan Srivastava and S. S. Bhat | Electrical Engineering
Department, VNIT, Nagpur, India | | 98 | Solution of Optimal Power Flow with Voltage stability enhancement using Grey Wolf Optimization232 | R. H. Bhesdadiya, Dilip P
Ladumor, Indrajit N. Trivedi,
Pradeep Jangir, Mahesh H.
Pandya and Ashok Parmar | Department of Electrical
Engineering, Lukhdhirji
Engineering College Morbi-
Gujarat, India | | 99 | Transient Stability Analysis and Improvement in Microgrid239 | Richa Singh and Mukesh Kirar | Department of Electrical
Engineering, MANIT Bhopal,
India | | 100 | Reliability Evaluation of DG integrated Automated Distribution System246 | Ch. V. S. S. Sailaja and P. V. N.
Prasad | Department of Electrical and
Electronics Engineering, Vasavi
College of Engineering, O. U
Hyderabad, India | | 101 | Fuzzy Tuned AGC Scheme for a Hydro-
hydro Power System252 | Gulshan Sharma, Ibraheem and
K. R. Niazi | Department of Electrical
Engineering, Nirma University,
Ahmedabad, India | | 103 | High Impedance Fault Detection in Microgrid Using Maximal Overlapping Discrete Wavelet Transform and Decision Tree258 | Susmita Kar and S. R.
Samantaray | School of Electrical Sciences, IIT
Bhubaneswar, India | | 104 | Energy Assessment of Floating
Photovoltaic System264 | Neha Yadav, Manju Gupta and
K. Sudhakar | Elect. & Electro. Department, Oriental Institute of Sci. & Technology Bhopal, India | | 105 | Application of DSTATCOM for Power Quality Improvement using Isolated Zigzag/star Transformer under varying Consumer Load270 | Shweta Singhai, Mohd. Navaid
Ansari and Monika Jain | OIST, Bhopal, M. P., India | | 107 | Customer and Aggregator Balanced
Dynamic Electric Vehicle Charge
Scheduling in a Smart Grid
Framework276 | Pulkit Goyal, Avinash Sharma,
Shashank Vyas and Rajesh
Kumar | Centre for Energy and
Environment Malaviya National
Institute of Technology Jaipur,
India | | 109 | A Simple Feed Forward Fuzzy Direct
Torque Control of DSP Based Induction
Motor Drive284 | Gopal L. Jat, Abhay Mahajan,
Kartar Singh and Shimi S. L. | Department of Electrical
Engineering, NITTTR Chandigarh,
India | | 110 | Automatic Recognition of Fake Indian Currency Note290 | Sonali R. Darade and G. R.
Gidveer | Department of Electronics and
Telecommunication Engineering,
JNEC, Aurangabad, Maharashtra,
India | | 111 | Surge Arresters for Ultra High Voltage
Transmission System - A Review295 | Puneeth Bhurat, Vasudev N and Meera K. S. | High Voltage Division, Central
Power Research Institute,
Bengaluru, India | | 113 | Fuzzy Logic Based Determination of Cost Overrun of Hydro Power Plant301 | Anuja Shaktawat and Shelly
Vadhera | SREE National Institute of
Technology, Kurukshetra,
Haryana, India | |-----|--|---|---| | 114 | Performance and Feasibility Analysis of Integrated Hybrid System for Remote Isolated Communities305 | Radhey Shyam Meena, Bharat
Dubey, Nitin Gupta, Anindya S
Parira and D. K. Sambariya
Mukesh Kr. Lodha | Ministry of New & Renewable
Energy New Delhi, India | | 115 | Optimal Selection of Wind Power Plant
Components using Technique for Order
Preference by Similarity to Ideal Solution
(TOPSIS)310 | Neha Gupta and Yaduvir Singh | Department of Electrical
Engineering, Harcourt Butler
Technical University, Kanpur
(U.P.), India | | 116 | Implication of Copper Indium Gallium
Selenide on Device for Efficient Thin Film
Solar Cell Technology316 | R. S. Meena, Sushil Kumar
Sharma and Mukesh Kumar
Lodha | NSM Division, Ministry of New & Renewable Energy, New Delhi, India | | 120 | Deregulation Analytics for Security Assessment in IEEE 118-Bus System using Modular Power Flow321 | Amit Raje, S. D. Varwandkar and
Anil Raje | Aartech Solonics Limited Bhopal,
Madhya Pradesh, India | | 121 | Implementation and Analysis of PLC
SCADA Controlled Closed Loop Four
Quadrant Speed Control of Chopper fed
DC Motor327 | Madhusudan Singh, Mini
Sreejeth, Prateek Singh, Rohan
Mathur and Ravi Ranjan | Dept. of Elec. Engg., Delhi
Technological University, India | | 122 | Modeling and Performance Analysis of Digital Control Drive of Induction Machine in Synchronous Reference Frame333 | Sagnik Halder and Tapas Kumar
Saha | Department of Electrical
Engineering, NIT Durgapur,
Durgapur, India | | 125 | Close Loop Control of Three Phase
Active Front End Converter using
SVPWM Technique339 | Viraj Selarka, Prem Shah,
Divyesh J. Vaghela and Manisha
T. Shah | Department of Electrical
Engineering, Institute of
Technology, Nirma University,
India | | 129 | Deviation Price Based Automatic
Generation Control for a Two Area
Power System345 | Vilina Pai and Manju Gupta | Department of Electrical
Engineering O.I.S.T, R.G.P.V
University, Bhopal, India | | 133 | Islanding Detection using Hilbert
Transform in a Distributed Generation
Environment351 | Maibam Shillakanta Singh,
Premalata Jena, Jitendra Kumar
and Saran Satsangi | Department of Electrical
Engineering Indian Institute of
Technology Roorkee, Roorkee,
India | | 134 | Single Phase Modified Multilevel
Inverter in Standalone Photovoltaic
System355 | Niral Yagnesh Yagnik, Hitesh M.
Karkar, Harshul Y. Yagnik and I.
N. Trivedi | Dept. of Electrical Engineering
Atmiya Institute of Technology
and Science Rajkot, India | | 136 | Design of Incentive price for Voluntary
Demand Response Programs using Fuzzy
System363 | Kumar Raja Gadham and
Tirthadip Ghose | Electrical & Electronics Engg. Dept. Birla Institute of Technology, Mesra Ranchi, India | | 137 | Energy Meter Tampering: Major Cause of Non-Technical Losses in Indian Distribution Sector368 | Priyamvada Chandel, Tripta
Thakur and B. A. Sawale | Central Power Research Institute,
Bhopal, India | | 138 | Optimal Overcurrent Relay Coordination in Distribution System using Nonlinear Programming Method372 | Pragati N. Korde and Prashant P.
Bedekar | Electrical Engineering Department G. H. Raisoni Institute of Engineering and Technology, Pune, India | | 139 | Design, Analysis and Realization of SVPWM using Embedded Code Generation Technique for a Three Phase, Two Level Inverter377 | Kriti Agrawal, Abhay Gandhi, M.
T. Shah and M. V. Gojiya | Department of Electrical
Engineering, Institute of
Technology, Nirma University,
India | | 142 | A Novel Approach for the Designing of
Controller for the Wind Energy
Conversion System383 | Dimple Pardeshi and Balwinder
Singh Surjan | Department of Electrical
Engineering PEC University of
Technology Chandigarh, India | | 144 | A New Mathematical function for Optimal Sizing and Siting of DG System390 | Thummala Ravi kumar and G.
Kesava Rao | Dept of EEE., KL University,
Vaddeswaram, Vijayawada, A.
P., India | | The Development and potential of Wind Power Sector in India396 Pi and Fuzzy logic based shunt APF For Power Quality Enhancement401 Part Power Quality Enhancement401 Part Power Quality Enhancement401 Part Power Power Quality Enhancement407 Passed MPPT Control Using Two-Switch Non Immerting Buck Books Converter412 Noncretter using GSPWM Technique with Unity Input Power Factor420 Value of Two-Pole Squirrel-Cage Induction Generator in Small Wind Energy Conversion Systems | | | | | |--|-----|---|---|--| | Power Quality Enhancement401 150 Performance Analysis of Seven Level Three Phase Asymmetric Multilevel Inverter at Various Modulation Indices407 152 Design & Performance Analysis of Fuzzy Based MPPT Control Using Two-Switch Non Inverting Buck-Boost Converter414 153 Speed Control of 3-Phase Induction Motor fed Through Direct Matrix Converter using GSPWM Technique with Unity Input Power Factor | 146 | · | | Engineering Department,
National Institute of Technology, | | 150 Performance Analysis of Seven Level Three Phase Asymmetric Multilevel Inverter at Various Modulation Indices407 152 Design & Performance Analysis of Fuzzy Based MPFT Control Using Two Switch Non Inverting Buck-Boost Converter414 153 Speed Control of 3 Phase Induction Motor fed Through Direct Matrix Converter using SSPWM Technique with Unity Input Power Factor420 154 Adaptive Distance Relay Algorithm for Shunt Compensated Transmission Line426 155 Two-Pole Squirrel-Cage Induction Generator in Small Wind Energy Conversion Systems432 157 Reference Based Maximum Power Point Tracking Algorithm for Photo-Voltaic Power Generation438 159 Single Phase 9 Level Symmetrical Cascaded H-Bridge Inverter for Different PWM Techniques444 163 Detection of Power Quality Disturbances Using Discrete Wavelet Transform450 164 Implementation of Hybrid Fuzzy Silding Mode Controller for Power System Interruptions and Transmission Lines with STATCOM469 165 Puzzy Logic Based Fault Detector and Classifier for Three Phase Transmission Lines with STATCOM469 166 Fuzzy Logic Based Fault Detector and Classifier for Three Phase Transmission Lines with STATCOM | 148 | , 3 | | | | Rased MPPT Control Using Two-Switch Non Inverting Buck-Boost Converter414 153 Speed Control of 3-Phase Induction Motor fed Through Direct Matrix Converter using GSPWM Technique with Unity Input Power Factor | 150 | Performance Analysis of Seven Level
Three Phase Asymmetric Multilevel | | Department of Electrical Engg.,
Sardar Patel College of | | Motor fed Through Direct Matrix Converter using GSPWM Technique with Unity Input Power Factor | | Based MPPT Control Using Two-Switch | | Electronics National Institute of Engineering, Mysuru, India | | Shunt Compensated Transmission Line | 153 | Motor fed Through Direct Matrix Converter using GSPWM Technique with | Manoj Kumar, Swapnajit | National Institute of Technology, | | 155 Two-Pole Squirrel-Cage Induction Generator in Small Wind Energy Conversion Systems | 154 | Shunt Compensated Transmission | | Engineering National Institute of | | Tracking Algorithm for Photo-Voltaic Power Generation438 159 Single Phase 9 Level Symmetrical Cascaded H-Bridge Inverter For Different PWM Techniques444 163 Detection of Power Quality Disturbances Using Discrete Wavelet Transform450 164 Implementation of Hybrid Fuzzy Sliding Mode Controller for Power System Stability456 165 Detection and Classification of Current Interruptions and Translents by Using Wavelet Transform and Neural Network462 166 Fuzzy Logic Based Fault Detector and Classifier for Three Phase Transmission Lines with STATCOM469 167 Fuel Supply And Performance Aspects Of Biomass Gasifier-Engine-Generator System475 171 A Novel Approach to Multiple Dominant Current Harmonics Removal Under Realistic Utility Condition of Harmonic Unbalance481 173 Review of Grid Computing Technology in Electrical Power Systems487 174 A Sequential Optimization Approach for Competitive Procurement of Ancillary Services in Deregulated Power Sector492 175 A Sequential Optimization Approach for Competitive Procurement of Energy and Ashok M. Jadhav 179 A Smart Demand Side Management Mechanism for Domestic Energy Consumers with Major HVAC Load504 Mansoori Ankit Kumar Sharma, Om Prakash Mahela and Sheesh Ram Ola Ankit Kumar Sharma, Om Prakash Mahela and Sheesh Ram Ola Ankit Kumar Sharma, Om Prakash Mahela and Sheesh Ram Ola Apex Institute of Engineering & Technology, Japinur, India Dept. of Electrical Engineering, NIT, Srinagar J&, India Department of Electrical Power Sector Sharma, Y. R. Sood and Rajnish Shrivastava Department of Electrical | 155 | Generator in Small Wind Energy
Conversion Systems432 | _ | Department of Electrical
Engineering National Institute of
Technology Kurukshetra,
Haryana, India | | Cascaded H-Bridge Inverter For Different PWM Techniques444 163 Detection of Power Quality Disturbances Using Discrete Wavelet Transform450 164 Implementation of Hybrid Fuzzy Sliding Mode Controller for Power System Hussain and Mohammad Abid Stability456 165 Detection and Classification of Current Interruptions and Transients by Using Wavelet Transform and Neural Network462 166 Fuzzy Logic Based Fault Detector and Classifier for Three Phase Transmission Lines with STATCOM | 157 | Tracking Algorithm for Photo-Voltaic | Munjani and Nasreen R. | | | Using Discrete Wavelet Transform450 Ram Ola Implementation of Hybrid Fuzzy Sliding Mode Controller for Power System Stability456 Bazaz Interruptions and Transients by Using Wavelet Transform and Neural Network462 Interruptions and Transients by Using Wavelet Transform and Neural Network462 Interruptions and Transients by Using Wavelet Transform and Neural Network462 Interruptions and Transients by Using Wavelet Transform and Neural Network462 Interruptions and Transients by Using Wavelet Transform and Neural Network462 Interruptions and Transients by Using Wavelet Transform and Neural Network462 Interruptions and Transients by Using Wavelet Transform and Neural Network462 Interruptions and Transients by Using Wavelet Transform and Neural Network462 Interruptions and Transients by Using Wavelet Transform and Neural Network462 Interruptions and Transients by Using Wavelet Transform and Neural Network462 Interruptions and Transients by Using Wavelet Transform and Neural Network462 Interruptions and Transients by Using Wavelet Transform and Neural Network462 Interruptions and Transients by Using Wavelet Transform and Neural Network462 Interruptions and Transients by Using Wavelet Transform and Neural Network462 Interruptions and Transients by Using Wavelet Transform and Neural Network462 Interruptions and Transients by Using Wavelet Transform and Neural Network462 Interruptions and Transients by Using Wavelet Transform and Mohammad Abid Bazaz Interruptions and Transients by Using Wavelet Transform and Neural Network462 Interruptions and Transients by Using Wavelet Transform and Suresh Kumar Interruptions and Transients by Using Wavelet Transform and Suresh Kumar Interruptions and Transients by Using Wavelet Transform and Suresh Kumar Interruptions and Transients by Using Wavelet Transform and Suresh Kumar Interruptions and Transients by Using Wavelet Transform and Suresh Kumar Interruptions and Transients by Using Wavelet Transform | 159 | Cascaded H-Bridge Inverter For Different | • • | Dept of EEE, VINT, Nagpur, India | | Mode Controller for Power System Stability456 165 Detection and Classification of Current Interruptions and Transients by Using Wavelet Transform and Neural Network462 166 Fuzzy Logic Based Fault Detector and Classifier for Three Phase Transmission Lines with STATCOM469 167 Fuel Supply And Performance Aspects Of Biomass Gasifier-Engine-Generator System475 171 A Novel Approach to Multiple Dominant Current Harmonics Removal Under Realistic Utility Condition of Harmonic Unbalance481 173 Review of Grid Computing Technology in Electrical Power Systems487 175 An Investigation of the Various Approaches for Competitive Procurement of Ancillary Services in Deregulated Power Sector492 177 A Sequential Optimization Approach for Competitive Procurement of Energy and Ancillary Services | 163 | | Prakash Mahela and Sheesh | | | Interruptions and Transients by Using Wavelet Transform and Neural Network462 166 Fuzzy Logic Based Fault Detector and Classifier for Three Phase Transmission Lines with STATCOM469 167 Fuel Supply And Performance Aspects Of Biomass Gasifier-Engine-Generator System475 171 A Novel Approach to Multiple Dominant Current Harmonics Removal Under Realistic Utility Condition of Harmonic Unbalance481 173 Review of Grid Computing Technology in Electrical Power Systems487 175 An Investigation of the Various Approaches for Competitive Procurement of Ancillary Services in Deregulated Power Sector492 177 A Sequential Optimization Approach for Competitive Procurement of Energy and Ancillary Services498 179 A Smart Demand Side Management Mechanism for Domestic Energy Consumers with Major HVAC Load504 Rotte Vikram Raju and Ebha Gotte Vikram Raju and Ebha Roley Department of Electrical Engineering, National Institute of Technology, Bhopal, India Department of Electrical Pondicherry Engineering College, Puducherry, India Department of Electrical Engg., PEC University of Technology, Chandigarh, India Department of Electrical Fingineering College, Puducherry, India Department of Electrical Engg., PEC University of Technology, Chandigarh, India Department of Electrical, VNIT Nagpur, India EED, N.I.T. Hamirpur (H.P.), India EED, N.I.T. Hamirpur (H.P.), India EED, N.I.T. Hamirpur (H.P.), India Pondicherry Engineering College, Puducherry, India Department of Electrical Fingineering College, Pactor Producherry, India Department of Electrical Fingineering College, Puducherry, India Department of Electrical Fingineering College, PEC University of Technology, India Department of Electrical Fingineering College, PEC University of Technolog | 164 | Mode Controller for Power System | Hussain and Mohammad Abid | | | Classifier for Three Phase Transmission Lines with STATCOM469 Fuel Supply And Performance Aspects Of Biomass Gasifier-Engine-Generator System475 171 A Novel Approach to Multiple Dominant Current Harmonics Removal Under Realistic Utility Condition of Harmonic Unbalance481 173 Review of Grid Computing Technology in Electrical Power Systems487 An Investigation of the Various Approaches for Competitive Procurement of Ancillary Services in Deregulated Power Sector492 177 A Sequential Optimization Approach for Competitive Procurement of Energy and Ancillary Services498 179 A Smart Demand Side Management Mechanism for Domestic Energy Consumers with Major HVAC Load504 Koley Engineering, National Institute of Technology Raipur, C.G., India Pondicherry Engineering College, Puducherry, Popartment of Electrical Engg., Chandigarh, India Department of Electrical, VNIT Nagpur, India EED, N.I.T. Hamirpur (H.P.), India Sharma, Y. R. Sood and Rajnish Shrivastava EED, N.I.T. Hamirpur (H.P.), India Department of Electrical EED, N.I.T. Hamirpur (H.P.), India Parvathy S., Nita R. Patne and Mechanism for Domestic Energy Consumers with Major HVAC Load504 | 165 | Interruptions and Transients by Using | | Engineering Maulana Azad
National Institute of Technology, | | Biomass Gasifier-Engine-Generator System475 171 A Novel Approach to Multiple Dominant Current Harmonics Removal Under Realistic Utility Condition of Harmonic Unbalance481 173 Review of Grid Computing Technology in Electrical Power Systems487 175 An Investigation of the Various Approaches for Competitive Procurement of Ancillary Services in Deregulated Power Sector492 177 A Sequential Optimization Approach for Competitive Procurement of Energy and Ancillary Services498 179 A Smart Demand Side Management Mechanism for Domestic Energy Consumers with Major HVAC Load504 Dhiraj Bharat and Aanchal Sharma Department of Electrical Engg., PEC University of Technology, Chandigarh, India Department of Electrical, VNIT Nagpur, India EED, N.I.T. Hamirpur (H.P.), India EED, N.I.T. Hamirpur (H.P.), India Department of Electrical Sharma, Y. R. Sood and Rajnish Shrivastava Department of Electrical EED, N.I.T. Hamirpur (H.P.), India Department of Electrical Engineering, Visvesvaraya National Institute of Technology, | 166 | Classifier for Three Phase Transmission | • | Engineering, National Institute of | | Current Harmonics Removal Under Realistic Utility Condition of Harmonic Unbalance481 173 Review of Grid Computing Technology in Electrical Power Systems487 An Investigation of the Various Approaches for Competitive Procurement of Ancillary Services in Deregulated Power Sector492 177 A Sequential Optimization Approach for Competitive Procurement of Energy and Ancillary Services498 179 A Smart Demand Side Management Mechanism for Domestic Energy Consumers with Major HVAC Load504 Sharma PEC University of Technology, Chandigarh, India Pepartment of Electrical, VNIT Nagpur, India EED, N.I.T. Hamirpur (H.P.), India EED, N.I.T. Hamirpur (H.P.), India PEC University of Technology, Chandigarh, India Pepartment of Electrical, VNIT Nagpur, India EED, N.I.T. Hamirpur (H.P.), India Sharma, Y. R. Sood and Rajnish Shrivastava Parvathy S., Nita R. Patne and Ashok M. Jadhav Department of Electrical Engineering, Visvesvaraya National Institute of Technology, | 167 | Biomass Gasifier-Engine-Generator | L. Kumararaja | | | Electrical Power Systems487 An Investigation of the Various Approaches for Competitive Procurement of Ancillary Services in Deregulated Power Sector492 A Sequential Optimization Approach for Competitive Procurement of Energy and Ancillary Services498 A Smart Demand Side Management Mechanism for Domestic Energy Consumers with Major HVAC Load504 Anuj Banshwar, Naveen Kr. Sharma, Y. R. Sood and Rajnish Shrivastava EED, N.I.T. Hamirpur (H.P.), India EED, N.I.T. Hamirpur (H.P.), India Department of Electrical Engineering, Visvesvaraya National Institute of Technology, | 171 | Current Harmonics Removal Under
Realistic Utility Condition of Harmonic | | PEC University of Technology, | | Approaches for Competitive Procurement of Ancillary Services in Deregulated Power Sector492 177 A Sequential Optimization Approach for Competitive Procurement of Energy and Ancillary Services498 179 A Smart Demand Side Management Mechanism for Domestic Energy Consumers with Major HVAC Load504 Sharma, Y. R. Sood and Rajnish Shrivastava Parvathy S., Nita R. Patne and Ashok M. Jadhav Department of Electrical Engineering, Visvesvaraya National Institute of Technology, | 173 | , , | Amulya and P. S. Kulkarni | • | | Competitive Procurement of Energy and Ancillary Services498 179 A Smart Demand Side Management Mechanism for Domestic Energy Consumers with Major HVAC Load504 Sharma, Y. R. Sood and Rajnish Shrivastava Parvathy S., Nita R. Patne and Department of Electrical Engineering, Visvesvaraya National Institute of Technology, | | Approaches for Competitive
Procurement of Ancillary Services in
Deregulated Power Sector492 | Sharma, Y. R. Sood and Rajnish
Shrivastava | | | Mechanism for Domestic Energy Ashok M. Jadhav Engineering, Visvesvaraya Consumers with Major HVAC Load504 Engineering, Visvesvaraya National Institute of Technology, | 177 | Competitive Procurement of Energy and | Sharma, Y. R. Sood and Rajnish | EED, N.I.T. Hamirpur (H.P.), India | | | 179 | Mechanism for Domestic Energy | • | Engineering, Visvesvaraya
National Institute of Technology, | | 180 | A Novel Technique to Reduce Source
Current Harmonics under Realistic Utility
Condition of Harmonic Unbalance512 | Dhiraj Bharat and Priti
Srivastava | Electrical Engineering Department PEC University of Technology Chandigarh, India | |-----|--|--|--| | 181 | Graph Theory Based Performance Analysis of Three-Phase Self-Excited Induction Generator using Differential Evolution519 | Dipanjan Samajpati and Sankar
Narayan Mahato | Department of Electrical
Engineering, National Institute of
Technology, Durgapur, India | | 184 | A Review on Wind Energy Conversion
System and Enabling Technology527 | Devashish, Amarnath Thakur,
Swetapadma Panigrahi and R R
Behera | Dept. of EEE, National Institute of
Technology, Jamshedpur, India | | 188 | A review of Power System State
Estimation: Techniques, State-of-the-art
and Inclusion of FACTS controllers533 | Meera R. Karamta and J. G.
Jamnani | Dept. of Electrical Engg, Pandit
Deendayal Petroleum University,
Raisan, Gandhinagar, India | | 194 | Design, Simulation and Implementation
of Maximum Power Point Tracking
(MPPT) for Solar based Renewable
Systems539 | Ashwin Chandwani and Abhay
Kothari | Department of Electrical
Engineering, Institute of
Technology, Nirma University,
Ahmedabad, India | | 195 | Influence of Switching Frequency of the Voltage Waveforms on Breakdown in Twisted Pairs545 | S. Narasimha Rao and
Elanseralathan K. | Dept. of EEE Pondicherry
Engineering College, Puducherry,
India | | 196 | AERASCIS: An Efficient and Robust
Approach for Satellite Color Image
Segmentation549 | Dibya Jyoti Bora and Anil Kumar
Gupta | Department of Computer Science
& Applications, Barkatullah
University, Bhopal, India | | 202 | Analysis of Extended Kalman Filter based
Dynamic State Estimator's performance
under Anomalous Measurement
Conditions for Power System557 | Dishang D. Trivedi, Santosh C.
Vora and Meera R. Karamta | Dept. of Electrical Engg.,Institute
of Technology, Nirma University,
Ahmedabad, India | | 214 | Enhancement of Electrical Power Transmission System Using PSO With SVCN/A | Rohit Gupta, Subhash
Nimanpure, Siddharth
Shrivastava and Sonam Mishra | UIT RGPV, Bhopal, India | | 217 | Combating Distance Limitation for
Communications within Multiple Micro-
Grids by Virtual Routers571 | Meena Agrawal and Chaitanya
P. Agrawal | Energy Centre, Maulana Azad
National Institute of Technology,
Bhopal, India | | 220 | Effect of Induced linear birefringence on Faraday Current Sensor using Ultra low Birefringence Optical Fiber577 | B. A. Sawale | Central Power Research Institute,
Bhopal |