Geotechnical Frontiers 2017

Foundations

Selected Papers from Sessions of Geotechnical Frontiers 2017

Geotechnical Special Publication Number 279

Orlando, Florida, USA 12 – 15 March 2017

Editors:

Thomas L. Brandon Richard J. Valentine

ISBN: 978-1-5108-3950-2

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2017) by American Society of Civil Engineers All rights reserved.

Printed by Curran Associates, Inc. (2017)

For permission requests, please contact American Society of Civil Engineers at the address below.

American Society of Civil Engineers 1801 Alexander Bell Drive Reston, VA 20191 USA

Phone: (800) 548-2723 Fax: (703) 295-6333

www.asce.org

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2633 Email: curran@proceedings.com Web: www.proceedings.com

Contents

Bridge and Offshore Structure Scour

Effect of the Level of Compaction on the Internal Erosion Potential for Granular Soils
Comparison and Estimation of the Local Scour Depth around Pile Groups and Wide Piers
Experimental Investigation of the Pier Streamlining Effect on Bridge Local Scour under Clear Water Conditions
Modified Strain Wedge Calculation of a Laterally Loaded Pile in Sand Considering Scouring
Study of the Particle Shape Influence on Soil Erodibility Using Coupled CFD-DEM Modeling
Two-Dimensional Soil Erosion Profile Using Electrical Resistivity Surveys50 Md. Zahidul Karim and Stacey E. Tucker-Kulesza
Geosynthetics in Foundations
Geofoam Inclusions for Reducing Passive Force on Bridge Abutments Based on Large-Scale Tests
Observation of the Progressive Failure Mechanism of Reinforced Foundation Soil Using the Digital Image Correlation Technique69 Mazhar I. Arshad, Monica Prezzi, and Rodrigo Salgado
Numerical Modelling, Design, and Construction of a Geotextile-Reinforced Soil-Metal Buried Structure (GRS) under Deep Fills in Challenging Soil Conditions

Protecting Buried HDPE Pipes Subjected to Ground Subsidence Using Geosynthetics
Offshore Foundation Systems
Numerical Study of the Effect of Pile Driving on a Position of a Neutral Plane101
Arindam Dey and Michael C. Koch
Numerical Simulation of the Lateral Loading Capacity of a Bucket Foundation112
Xu Yang, Xuefei Wang, and Xiangwu Zeng
Three-Dimensional Finite Element Modeling for Spudcan Penetration into a Clayey Seabed
Offshore Anchor Penetration in Sands—Granular Simulations132 Nan Zhang and T. Matthew Evans
Drop Weight Dynamic Load Testing for Construction Monitoring and Quality Control of Offshore Drilled Foundations
Experimental Investigation of the Horizontal Resistance of Group Suction Piles with Different Pile Spacing
Pile, Shaft, and Pier Foundations
Parametric Study for Understanding the Behavior of Integral Abutment Bridges
Applications of the Continuous Wavelet Transform Method in Crosshole Sonic Logging Tests
A Robust Method for a Lateral Loading Analysis of Large Diameter Piles184 Bret N. Lingwall, Byron Foster, Omololu Ogunseye, and James Gingery
Development of Empirical Models to Estimate the Increase in Pile Resistance (Set-Up) with Time193 Md. Nafiul Haque and Murad Y. Abu-Farsakh

Robust Geotechnical Design of Piled-Raft Foundations forTall Onshore Wind Turbines
Drivability and Performance of Steel H-Piles in Schist Saprolite214 Lei Gu, Sarah E. McInnes, and Ara G. Mouradian
Elastic Analysis of Differential Settlements for Steel Storage Tank Foundations 223 Suranga Gunerathne, Hoyoung Seo, William Lawson, and Priyantha Jayawickrama
Sustainable Slope Protection and Cut-Off Wall Installation in Densely Populated Areas by the Press-In Piling Method
Load-Carrying Capacity of Slab-on-Grade Foundations Supporting Rack Post Loads
A Semi-Analytical Solution for the Analysis of Axially Loaded Pile Groups in Layered Elastic Soil
Laboratory Study of the Effect of Pile Surface Roughness on the Response of Soil and Non-Displacement Piles
The Sensitivity of Settlement Predictions for an Axially LoadedDrilled Shaft to ε50Kevin Stanton, Maryam Ostovar, and Ramin Motamed
Multi-Level O-Cell Tests on Instrumented Bored Piles in the Mekong 274 Delta 274 H. M. Nguyen, A. J. Puppala, U. D. Patil, L. Mosadegh, and A. Banerjee
Use of High-Strain Dynamic Testing to Efficiently Design and Construct Bridge Foundations in Glacial Soils284 Morgan Race, Bryan Field, and Matthew Glisson
Underpinning a Boston Landmark for the Ages: The First Church of Christ, Scientist (TFCCS), the Original Mother Church (TOMC), Foundation Repairs

Augered Cast-in-Place Pile Foundation Design and Construction for the MLK Bridge, New Stadium Project, Atlanta
Graham Elliott, Natale Marini, Matthew Meyer, and W. Morgan NeSmith
General Bearing Capacity Theory and Soil Extraction Method for the Mitigation of Differential Settlements
Minimization of the Cost and CO ₂ Emissions for Strip Footings under Dynamic Loading Using a Big Bang-Big Crunch Algorithm
Three-Dimensional Soil-Pile Group Interaction in Layered Soil with Disturbed Zone by the Boundary Element Analysis
Discussion of Concrete Pier Foundation Design for Transmission
Structures
Case History of a Full Scale Axial Load Test of Sheet Piles
Load Testing and Performance of Instrumented ACIP Piles in Texas
Clays
Variability of Pile-Soil Interaction: A Comparison of Behavior Seen in Instrumented Pile Pairs at Three MnDOT Bridge Sites