2017 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED 2017)

Taipei, Taiwan 24-26 July 2017

IEEE Catalog Number: ISBN:

CFP17LOW-POD 978-1-5090-6024-5

Copyright © 2017 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP17LOW-POD

 ISBN (Print-On-Demand):
 978-1-5090-6024-5

 ISBN (Online):
 978-1-5090-6023-8

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

Program

Session 1A: Memories & their Applications

Session Chair: Sangyoung Park

Write-Energy-Saving ReRAM-Based Nonvolatile SRAM with Redundant Bit-Write-Aware Controller for Last-Level Caches, Tsai-Kan Chien¹², Lih-Yih Chiou¹, Yi-Sung Tsou¹, Shyh-Shyuan Sheu², Pei-Hua Wang², Ming-Jinn Tsai² and Chih-I Wu²

¹National Cheng Kung University, ²Industrial Technology Research Institute

- Charge Recycled Low Power SRAM with Integrated Write and Read Assist, for Wearable Electronics, Designed in 7nm FinFET Technology, Vivek Nautiyal, Gaurav Singla, Satinderjit Singh, Fakhruddin ali Bohra, Jitendra Dasani, Lalit Gupta and Sagar Dwivedi ARM, Ltd.
- 13 Spin-Torque Sensors with Differential Signaling for Fast and Energy Efficient Global Interconnects, Zubair Azim and Kaushik Roy

Purdue University

Session 1B: Design Implications of Novel Interconnects & Technologies Session Chair: Alper Buyuktosunoglu

- 19 A Carbon Nanotube Transistor based RISC-V Processor using Pass Transistor Logic, Aporva Amarnath, Siying Feng, Subhankar Pal, Tutu Ajayi, Austin Rovinski and Ronald G. Dreslinski University of Michigan
- 25 Architecting Large-Scale SRAM Arrays with Monolithic 3D Integration, Joonho Kong¹, Young-Ho Gong² and Sung Woo Chung²

¹Kyungpook National University, ²Korea University

31 <u>Temporal Codes in On-Chip Interconnects</u>, Michael Mishkin¹, Nam Sung Kim² and Mikko Lipasti¹

1 University of Wisconsin-Madison, ²University of Illinois Urbana-Champaign

Session 2A: Analog Circuit Design Session Chair: Shreyas Sen

- 37 A 0.13pJ/bit, Referenceless Transceiver with Clock Edge Modulation for a Wired Intra-BAN Communication, Jihwan Park, Gi-Moon Hong, Mino Kim, Joo-Hyung Chae and Suhwan Kim Seoul National University
- 43 A 32nm, 0.65-10GHz, 0.9/0.3 ps/σ TX/RX jitter Single Inductor Digital Fractional-n Clock Generator for Reconfigurable Serial I/O, William Y. Li, Hyung Seok Kim, Kailash Chandrashekar, Khoa Nguyen, Ashoke Ravi Intel Corp.
- 49 A Tunable Ultra Low Power Inductorless Low Noise Amplifier Exploiting Body Biasing of 28 nm FDSOI Technology, Jennifer Zaini¹, Frédéric Hameau², Thierry Taris¹, Dominique Morche¹, Patrick Audebert¹ and Eric Mercier¹

¹CEA Leti, ²University of Bordeaux

Session 2B: HW Support for CNNs Session Chair: Ronald Dreslinski

- 55 CORAL: Coarse-grained Reconfigurable Architecture for Convolutional Neural Networks, Zhe Yuan, Yongpan Liu, Jinshan Yue, Jinyang Li and Huazhong Yang Tsinghua University
- 61 XNOR-POP: A Processing-in-Memory Architecture for Binary Convolutional Neural Networks in Wide-IO2 DRAMs, Lei Jiang¹, Minje Kim¹, Wujie Wen² and Danghui Wang³

 ¹Indiana University Bloomington, ²Florida International University, ³Northwestern Polytechnical University
- 67 <u>Bit-Width Reduction and Customized Register for Low Cost Convolutional Neural Network</u>
 <u>Accelerator</u>, Kyungrak Choi, Woong Choi, Kyungho Shin and Jongsun Park
 Korea University

Session 3A: Energy Storage & Cyber-Physical Systems Session Chair: Enrico Macii

- 73 Battery Assignment and Scheduling for Drone Delivery Businesses, Sangyoung Park, Licong Zhang and Samarjit Chakraborty
 TIJ Műnchen
- 79 Reconfigurable Thermoelectric Generators for Vehicle Radiators Energy Harvesting, Donkyu

 ${\sf Baek}^1$, Caiwen ${\sf Ding}^2$, Sheng ${\sf Lin}^2$, Donghwa ${\sf Shin}^3$, Jaemin ${\sf Kim}^4$, Xue ${\sf Lin}^5$, Yanzhi ${\sf Wang}^2$ and Naehyuck ${\sf Chang}^1$

 1 KAIST, 2 Syracuse University, 3 Yeungnam University, 4 Seoul National University, 5 Northeastern University

Session 3B: Design Methodologies for Machine Learning

Session Chair: Mikko Lipasti

85 Power Optimizations in MTJ-based Neural Networks through Stochastic Computing, Ankit

Mondal and Ankur Srivastava

University of Maryland

91 A Learning Bridge from Architectural Synthesis to Physical Design for Exploring Power

Efficient High-Performance Adders, Subhendu Roy¹, Yuzhe Ma², Jin Miao¹ and Bei Yu²

¹Cadence Design Systems, ²Chinese University of Hong Kong

Session 4A: Low-Voltage & Energy-Efficient Design

Session Chair: Naehyuck Chang

97 Comparative Study and Optimization of Synchronous and Asynchronous Comparators at Near-

Threshold Voltages, Sung Justin Kim, Doyun Kim and Mingoo Seok

Columbia University

103 Full Chip Power Benefits with Negative Capacitance FETs, Sandeep K. Samal¹, Sourabh

Khandelwal 2 , Asif I. Khan 1 , Sayeef Salahuddin 3 , Chenming Hu 3 and Sung Kyu Lim 1

¹Georgia Tech, ²Macquerie University, ³UC Berkeley

109 Design High Bandwidth-Density, Low Latency and Energy Efficient On-Chip Interconnect, Yong

Wang and Hui Wu

University of Rochester

Session 4B: Approximate & Learn! Session Chair: Hsiang-Yun Cheng

115 AxSerBus: A Quality-Configurable Approximate Serial Bus for Energy-Efficient Sensing,

Younghyun Kim¹, Setareh Behroozi¹, Vijay Raghunathan² and Anand Raghunathan²

 1 University of Wisconsin-Madison, 2 Purdue University

121 Approximate Memory Compression for Energy-Efficiency, Ashish Ranjan, Arnab Raha, Vijay Raghunathan and Anand Raghunathan

Purdue University

127 SENIN: An Energy-Efficient Sparse Neuromorphic System with On-Chip Learning, Myung-Hoon

Choi, Seungkyu Choi, Jaehyeong Sim and Lee-Sup Kim

KAIST

Session 5A: Architecture & Technology Support for Neural Networks

Session Chair: Tsung-Te Liu

Monolithic 3D IC Designs for Low-Power Deep Neural Networks Targeting Speech

Recognition, Kyungwook Chang¹, Deepak Kadetotad², Yu Cao², Jae-Sun Seo² and Sung Kyu Lim¹ Georgia Tech, ²Arizona State University

39 A Programmable Event-Driven Architecture for Evaluating Spiking Neural Networks, Arnab

Roy¹, Swagath Venkataramani², Neel Gala¹, Sanchari Sen², Kamakoti Veezhinathan¹ and Anand Raghunathan²

¹IIT Madras, ²Purdue University

45 An Energy-Efficient and High-Throughput Bitwise CNN on Sneak-Path-Free Digital ReRAM

 $\underline{\text{Crossbar}}$, Leibin Ni 1 , Zichuan Liu 1 , Wenhao Song 2 , J. Joshua Yang 2 , Hao Yu 1 , Kenwen Wang 3 and Yuangang Wang 3

¹Nanyang Technological University, ²University of Massachusetts Amherst, ³Huawei Technologies

Session 5B: Power Delivery Session Chair: Pradip Bose

151 Placement Mitigation Techniques for Power Grid Electromigration, Wei Ye¹, Yibo Lin¹, Xiaoqing

Xu¹, Wuxi Li², Yiwei Fu², Yongsheng Sun², Canhui Zhan² and David Z. Pan¹

¹UT Austin, ²Hisilicon Technologies

157 Spatial and Temporal Scheduling of Clock Arrival Times for IR Hot-Spot Mitigation,

Reformulation of Peak Current Reduction, Bhoopal Gunna, Lakshmi Bhamidipati, Houman

Homayoun and Avesta Sasan

George Mason University

163 Frequency and Time Domain Analysis of Power Delivery Network for Monolithic 3D ICs,

Kyungwook Chang¹, Shidhartha Das², Saurabh Sinha², Brian Cline², Greg Yeric² and Sung Kyu Lim¹ ¹Georgia Tech, ²ARM

Session 6A: Multi-Scale Energy-Efficient Designs

Session Chair: Yiran Chen

169 ShiftMask: Dynamic OLED Power Shifting Based on Visual Acuity for Interactive Mobile

Applications, Han-Yi Lin¹, Pi-Cheng Hsiu² and Tei-Wei Kuo^{1, 2}

¹National Taiwan University, ²Academia Sinica

175 <u>Signal Strength-Aware Adaptive Offloading for Energy Efficient Mobile Devices</u>, Young Geun Kim and Sung Woo Chung

Korea University

181 <u>Frequency Governors for Cloud Database OLTP Workloads</u>, Rathijit Sen and Alan Halverson Microsoft

187 <u>Tiguan: Energy-Aware Collision-Free Control for Large-Scale Connected Vehicles</u>, Minghua Shen and Guojie Luo

Peking University

Session 6B (Special Session): Interaction of Power Management & Security

Session Chair: Hsien-Hsin Sean Lee

(Invited) Ultra-low Energy Security Circuit Primitives for IoT Platforms, Sanu Mathew, Sudhir Satpathy, Vikram Suresh and Ram Krishnamurthy
Intel Labs

197 (Invited) Low Power Requirements and Side-Channel Protection of Encryption Engines:

¹Georgia Tech, ²Intel Labs

199 (Invited) Resilient and Energy-Secure Power Management, Pradip Bose and Alper Buyuktosunoglu
IBM T. J. Watson Research Center

203 (Invited) Secure Swarm Intelligence: A New Approach to Many-Core Power Management,

Augusto Vega, Alper Buyuktosunoglu and Pradip Bose

IBM T. J. Watson Research Center

Session 7A: Emerging Technologies Session Chair: David Brooks

2()9 Transistor-Level Monolithic 3D Standard Cell Layout Optimization for Full-Chip Static Power

Integrity, Bon Woong Ku¹, Taigon Song², Arthur Nieuwoudt² and Sung Kyu Lim¹

 1 Georgia Tech, 2 Synopsys

215 <u>Secure Human-Internet Using Dynamic Human Body Communication</u>, Shovan Maity, Debayan

Das, Xinyi Jiang and Shreyas Sen

Purdue University

221 Hotspot Monitoring and Temperature Estimation with Miniature On-Chip Temperature Sensors,

Pavan Kumar Chundi, Yini Zhou, Martha Kim, Eren Kursun and Mingoo Seok

Columbia University

Session 7B: Low-Power HW Security

Session Chair: Sanu Mathew

227 A Data Remanence based Approach to Generate 100% Stable Keys from an SRAM Physical

<u>Unclonable Function</u>, Muqing Liu, Chen Zhou, Qianying Tang, Keshab K. Parhi and Chris H. Kim University of Minnesota

233 An Improved Clocking Methodology for Energy Efficient Low Area AES Architectures using

Register Renaming, Siva Nishok Dhanuskodi and Daniel Holcomb University of Massachusetts Amherst

239 A Low-Power APUF-based Environmental Abnormality Detection Framework, Hongxiang Gu,

Teng Xu and Miodrag Potkonjak

UC Los Angeles

Poster Session

Session Chair: Thomas Wenisch

245 <u>Enabling Efficient Fine-Grained DRAM Activations with Interleaved I/O</u>, Chao Zhang and Xiaochen Guo

Lehigh University

251 Gabor Filter Assisted Energy Efficient Fast Learning Convolutional Neural Networks, Syed

	Shakib Sarwar, Priyadarshini Panda and Kaushik Roy
257	Purdue University
	Low Design Overhead Timing Error Correction Scheme for Elastic Clock Methodology, Sungju
	Ryu, Jongeun Koo and Jae-Joon Kim
263	Pohang University of Science and Technology <u>Efficient Query Processing in Crossbar Memory</u> , Mohsen Imani, Saransh Gupta, Atl Arredondo and
203	Tajana Rosing
	UC San Diego
269	A Low Power Duobinary Voltage Mode Transmitter, Ming-Hung Chien, Yen-Long Lee, Jih-Ren Goh
	and Soon-Jyh Chang
	National Cheng Kung University
275	A Simple Yet Efficient Accuracy Configurable Adder Design, Wenbin Xu ¹ , Sachin Sapatnekar ² and
	Jiang Hu ¹
	¹ Texas A&M University, ² University of Minnesota
281	E-Spector: Online Energy Inspection for Android Applications, Chengke Wang, Yao Guo, Peng
	Shen and Xiangqun Chen
207	Peking University
287	A Case for Efficient Accelerator Design Space Exploration via Bayesian Optimization, Brandon
	$Reagen^1$, José Miguel Hernanez-Lobato 2 , Robert Adolf 1 , Michael Gelbart 3 , Paul Whatmough 1^4 , Gu-Yeon
	Wei ¹ and David Brooks ¹
	¹ Harvard University, ² University of Cambridge, ³ University of British Columbia, ⁴ ARM Research
293	SceneMan: Bridging Mobile Apps with System Energy Manager via Scenario Notification, Li Li 1 ,
	Jun Wang ² , Xiaorui Wang ¹ , Handong Ye ² and Ziang Hu ²
	¹ Ohio State University, ² Huawei Technologies
299	Online Tuning of Dynamic Power Management for Efficient Execution of Interactive
	Workloads, James R. B. Bantock, Vasileios Tenentes, Bashir M. Al-Hashimi and Geoff V. Merrett
	University of Southhampton
305	<u>Workload-Driven Frequency-Aware Battery Sizing</u> , Yukai Chen, Enrico Macii and Massimo Poncino Politecnico di Torino
311	Exploring Sparsity of Firing Activities and Clock Gating for Energy-Efficient Recurrent Spiking
	Neural Processors, Yu Liu, Yingyezhe Jin and Peng Li
	Texas A&M University
317	QuARK: Quality-Configurable Approximate STT-MRAM Cache by Fine-Grained Tuning of
	Reliability-Energy Knobs, Amir Mahdi Hosseini Monazzah ¹ , Majid Shoushtari ² , Seyed Ghassem
	Miremadi ¹ , Amir M. Rahmani ^{2,3} and Nikil Dutt ²
	¹ Sharif University of Technology, ² UC Irvine, ³ TU Wien
323	Efficient Thermoelectric Cooling for Mobile Devices, Youngmoon Lee, Eugene Kim and Kang G. Shin
	University of Michigan
329	Low Power In-Memory Computing based on Dual-Mode SOT-MRAM, Farhana Parveen, Shaahin
	Angizi, Zhezhi He and Deliang Fan
	University of Central Florida