47th Power Sources Conference 2016

Orlando, Florida, USA 13 – 16 June 2016

ISBN: 978-1-5108-5235-8

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2016) by Power Sources Conference All rights reserved.

Printed by Curran Associates, Inc. (2018)

For permission requests, please contact Power Sources Conference at the address below.

Power Sources Conference Palisades Convention Management 411 Lafayette Street, Suite 201 New York, NY 10003

Phone: (212) 460-8090 x 202 Fax: (212) 460-5460

mgoldfarb@pcm411.com

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: 845-758-0400 Fax: 845-758-2633

Email: curran@proceedings.com Web: www.proceedings.com

Author	Index	xiii
	n 1: Battery Safety/Quality/Testing I n Chair: Jim Gucinski, <i>Rusty Nail Engineering</i>	
1.1	Measurements of Lithium-Ion Battery Explosions	1
1.2	Lithium Ion Battery Off-Gas Monitoring for Battery Health and Safety	5
1.3	Diagnostic Technologies for Lithium-Ion Batteries: Internal Short Circuit Detection	9
1.3	Development of a Nonflammable Electrolyte for Li-lon Batteries	13
1.5	WITHDRAWN	
	n 2: Advanced Primary Lithium Battery Technologies n Chair: Benjamin Jantson, <i>Raytheon Missile System</i>	
2.1	Primary Conformal Wearable Battery Eivind Listerud, Mario Destephen, David Darch, EaglePicher Technologies, LLC	14
2.2	Development of a High Temperature CFx Battery for Downhole Applications	18
2.2	Primary Lithium Batteries Using Hybrid Nanostructured CF _x /MnO ₂ Cathodes Stephen Mark Lipka, <i>University of Kentucky</i> Guandong Zhang, <i>Nanowise, LLC</i> Christopher Ray Swartz, <i>University of Kentucky</i>	22
2.3	High Energy Lithium Carbon Monofluoride (Li/CF _x) Pouch Cells	26
	n 3: Advanced Materials and Processes I	
Session	n Chair: Frank Puglia, <i>EaglePicher, Yardney Division</i>	
3.1	Synthesis and Electrochemical Performance of Li _x Mn _{2-y} Co _y O _{4-d} Cl _d Cathode Material	30
3.2	Low Cost, High Speed, Automated Laser Electrode Cutter	34
3.3	The G4 Synergetics Advanced NiMH Battery William Gotts, John Weckesser, G4 Synergetics	38
3.4	Moved to Poster 9	
3.5	Advances in Low Cost Manufacturing with Reclaimed Electrode Materials	39
	n 4: Battery Safety/Quality/Testing II n Chair: Jim Gucinski, <i>Rusty Nail Engineering</i>	
4.1	Characterization of Safety Aspects of Li-ion Batteries for Maritime Applications	43

4.2	Safety of Lithium-lon Batteries in Simulated Mining Environments Stephen M. Lipka, David T. Whitlow, Taylor Bramel, Christopher Swartz, Joanna E. Mroczkowska, University of Kentucky	47
4.3	Fundamental Aspects of Large-Scale Energy Storage System Safety	51
4.4	Failure Mechanisms in Overdischarged Large-format Lithium-ion Cells	55
4.5	NSWC Crane 23 October 2012 Fire Event Engineering Root Cause Analysis Reportable Findings Michael D. Chatelain, Samuel G. Stuart, Mark Tisher, NSWC Crane Division	56
	on 5: Advances in Lithium Batteries on Chair: Benjamin Jantson, <i>Raytheon Missile System</i>	
5.1	High Rate Li/CF _x -MnO ₂ Hybrid Technology Development	60
5.2	WITHDRAWN	
5.3	Lithium Rechargeable Pouch Cells - The Hidden Secret Shmuel De-Leon, Shmuel De-Leon Energy	NA
5.4	Cylindrical Pouch Lithium Polymer Cells for Medical Electronic Pills	NA
5.5	Science & Technology Efforts Supporting Soldier Power at CERDEC	63
	on 6: Advanced Materials and Processes II on Chair: Frank Puglia, <i>EaglePicher, Yardney Division</i>	
6.1	Conductivity of Dense Li-ion Solid Electrolytes Jeff Wolfenstine, Jan Allen, Army Research Laboratory Travis Thompson, Jeff Sakamoto, University of Michigan	64
6.2	Anion Intercalation Compounds for Energy Storage Jeffrey A. Read, US Army Research Laboratory	67
6.3	Multi-element Substituted Lithium Cobalt Phosphate Li-lon Cathode Jan L. Allen, Joshua L. Allen, Samuel A. Delp, Jeff Wolfenstine, T. Richard Jow, US Army Research Laboratory	71
6.4	Sodium-ion Battery Materials: Advancement to Commercialization Eungje Lee, Zonghai Chen, Guiliang Xu, Dehua Zhou, Christopher S. Johnson, Argonne National Laboratory Jerry Barker, Richard Heap, Noel Roche, Ruth Sayers, Chaou Tan, James Whitley, Yang Liu, Faradion Limited	75
6.5	Recent Progress with the Use of Garnet-type Superionic Conductors in Solid-State	
	Batteries Travis Thompson, Logan Williams, Robert D. Schmidt, Regina Garcia, <i>University of Michigan</i> Jeff Wolfenstine, Jan L. Allen, <i>Army Research Laboratory, RDRL-SED-C</i> Seungho Yu, Donald J. Siegel, Emmanouil Kioupakis, Jeff Sakamoto, <i>University of Michigan</i>	80
6. 6	Metadielectric Materials for Energy Storage Lev Mourokh, Queens College of CUNY, The Graduate Center of CUNY, Capacitor Sciences Inc. Pavel Lazarev, Capacitor Sciences Inc.	81
6.7	Developments in the Material Fabrication and Performance of LiMn ₂ O _{4-d} Cl _d Cathode Material	85

	on 7: Fuel Cells, Fuel Processing, and Storage I on Chair: Ian Kaye, <i>UltraCell</i>	
7.1	Development of Soldier Wearable Fuel Cells Tony Thampan, Shailesh Shah, <i>US ARMY CERDEC</i>	89
7.2	Solid Acid Fuel Cell Portable and Remote Power System Developments	93
7.3	Hydrogen Separation Membranes for Power & Energy Zachary William Dunbar, Army Research Laboratory	94
7.4	Developments in High Pressure Electrolysis to Enable Simplified and Efficient Hydrogen Fuel Production Stephen Szymanski, Luke Dalton, Katherine Ayers, <i>Proton OnSite</i>	
	on 8: Alternative Energy Platforms on Chair: Herb Hess, <i>University of Idaho</i>	
8.1	Production of Synthetic Fuel from Anaerobic Digester Gas and Other Wastes Lyman J. Frost, Joseph J. Hartvigsen, S Elango Elangovan, <i>Ceramatec Inc.</i>	100
8.2	Solar Fuel Production for a Sustainable Energy Deryn Chu, US Army Research Laboratory Terry DuBois, Edward Plichta, US Army CERDEC Robert Mantz, US Army Research Office Nick Wu, West Virgina University	104
8.3	Applications of Inductive Power Transfer Roger J. Soar, Cynetic Designs Ltd	105
8.4	Autonomous Vehicles Achieving Long Endurance through Collaboration Richard O. Stroman, William Adams, Keith Sullivan, Naval Research Laboratory John Palmisano, Excet, Inc. Randall Schur, Karen Swider-Lyons, Alan C. Schultz, Naval Research Laboratory	109
	on 9: Microgrid on Chair: Ryan Wiechens, <i>Lincoln Laboratory</i>	
9.1	Evaluation of Spark Ignition Engines Converted for Operation on Heavy Distillate Fuels . Tony Thampan, Terry DuBois, Richard Scenna, Michael Seibert, <i>The Defence Science and Technology Laboratory</i>	113
9.2	UK and NATO Standardisation Efforts for Dismounted Soldier Power	114
9.3	Energy Informed Operations: Mobile Military Microgrids	118
9.4	Intelligent Energy for Asynchonous Tactical Energy Networks Edward C. Shaffer, Bruce R. Geil, John B. Carroll, Army Research Laboratory Darrell D. Massie, Intelligent Power & Energy Research Corporation	122
Sessio	on 10: Poster Session	
P-1	Effect of Iron Disulphide, FeS ₂ , Decomposition on Modelling of Thermal Batteries	123
P-2	Salt Coated Zr/BaCrO ₄ Heat Papers for Thermal Batteries Chae Nam Im, Byeong June Park, Seung Ho Kang, Hae Won Cheong, Agency for Defense Development	125

P-3	Development of Porous MgO Perform through Tape Casting Technique to Fabricate a Thermal Battery Separator	129
	Kyung-Ho Kim, Sung-Min Lee, Korea Institute of Ceramic Engineering and Technology Seung-Ho Kang, Chaenam Im, Hae-Won Cheong, Agency for Defense Development	
P-4	Yoon Soo Han, Korea Institute of Ceramic Engineering and Technology	
P-4	Investigation of CoNi ₂ S ₄ as Suitable Cathode Material for Use in Next Generation Thermal Batteries Kyriakos Giagloglou, Julia L. Payne, <i>University of St. Andrews</i> Christina Crouch, Richard K.B. Gover, <i>AWE, Aldermaston</i>	133
	Paul Connor, John T. S. Irvine, <i>University of St. Andrews</i>	
P-5	Alumina Paper Separator Infiltrated with Molten Salts for Thermal Batteries Hae-Won Cheong, Seung-Ho Kang, Chae-Nam Im, Byung-June Park, Jang-Hyeon Cho, Agency for Defense Development	136
P-6	A Study of Thin Electrode Using Tape Casting Method without Organic Binder for	440
	Thermal Battery In Yea Kim, JaeHwan Ko, Gachon University Hae-Won Cheong, Agency for Defense Development Young Soo Yoon, Gachon University	140
P-7	Current Sharing of Lithium-ion Cells in Parallel David Wetz, Caroline Westenhover, University of Texas at Arlington	142
P-8	High Rate Characterization of a 76 V, 60 Ah Lithium-Iron-Phosphate Lithium Ion	
1-0	(LFP-LI) Battery for High Pulsed Rate Applications Christopher Lee Williams, Matthew Jene Martin, David Alan Wetz, University of Texas at Arlington John Heinzel, Naval Surface Warfare Center	145
P-9	A Pseudoplastic Flow Model for Slurry Deposition of Thin Film Cathodes	146
P-10	Cathodes for High Rate, Long Cycle Life Lithium Sulfur Batteries	150
P-11	Energy Storage Unit for 600V Micro Grid at Forward Operating Base	154
P-12	Thermal Runaway Propagation Resistant Li-ion Battery Designs that Achieve >180 Wh/kg	155
	Eric C. Darcy, NASA-JSC	
P-13	US Naval Lithium Battery Safety Program and Revision Three of the NAVSEA Technical Manual S9310-AQ-SAF-010	156
	Dan Kieffner, Mark Tisher, Naval Surface Warfare Center Crane Division Julie Simmons, Clint Winchester, Naval Surface Warfare Center Carderock Division Joseph Vignali, Elizabeth Donohue, David Cherry, Naval Sea Systems Command Headquarters	
P-14	Research Advances in Anion Exchange Membrane Electrolysis to Enable Low-Cost Hydrogen Energy Storage	159
	Stephen Szymanski, Julie Renner, Nemanja Danilovic, Morgan George, Chris Capuano, Wayne Gellett, Katherine Ayers, <i>Proton OnSite</i>	
P-15	Feasibility of the Al ₂ O ₃ Felts as a Separator for Thermal Batteries	163
	Kyung-Ho Kim, Yoon Soo Han, Sung-Min Lee, <i>Korea Institute Ceramic Engineering and Technology</i> Dang-Hyok Yoon, <i>Yeungnam University</i>	

P-16	Transient Anion Formation in Electrospun Alkaline Exchange Membranes under Operating Conditions	167
	on 11: Fuel Cells, Fuel Processing, and Storage II on Chair: Ian Kaye, <i>UltraCell</i>	
11.1	Fuel Cell Powered Small Unmanned Aerial Systems Deryn Chu, Rongzhong Jiang, Zachary Dunbar, Kyle Grew, Joshua McClure, US Army Research Laboratory Robert Mantz, U. S. Army Research Office Kevin Chu, US Army, CERDEC	170
11.2	Lightweight System Design and Demonstration of a High Reliability, Air Independent, PEMFC Power System for Aerial and Space Applications Robert Utz, Robert Wynne, Scott Ferguson, Mike Miller, Robert Sievers, Ying Song, Teledyne Energy Systems	174
11.3	Hydrogenation of Carbon Dioxide to Useful Fuels	178
11.4	Solid Oxide Fuel Cell Systems for Subkilowatt Power Generation in Expeditionary Manned or Unmanned Environments Thomas Westrich, USSI	182
11.5	Fluoropolymer-Based Anion-Exchange Membranes and Ionomers with Strong Stability and High Performance for Alkaline Membrane Fuel Cells and Metal-Air Batteries Shaoyi Xu, Shengdong Jiang, Weifan Sang, Yong Gao, Southern Illinois University Rong Jiang, Midwest Energy Group, Inc.	183
	on 12: Alternative Energy Warfighter on Chair: Herb Hess, <i>University of Idaho</i>	
12.1	The Usage of Alternative Energy in Naval Forces	187
12.2	Standard Architecture for Soldier Power System Jasper Groenewegen, DNV GL Norbert Haerle, Rianne t. Hoen, Rheinmetall Defence Electronics GmbH Mario Sonka, DNV GL Fabrizio Parmeggiani, Matteo Sedehi, Larimart Carsten Cremers, Sophie Weixler, Fraunhofer ICT	188
12.3	Power Sources for Dismounted Soldier Systems	192
12.4	Energy-Informed Soldier Mission Planning Through Simulation Richard O. Stroman, US Naval Research Laboratory Daniel J. Milliken, EOIR, Inc. Eric A. Leadbetter, Karen Swider-Lyons, US Naval Research Laboratory Jonathan Novoa, Army Command, Power & Integration Directorate	196
12.5	Preliminary Analysis of Energy Harvesting Insole José Collazo, Julianne S. Douglas, Alexis Moy, Christopher Mullen, US Army CERDEC	200
	on 13: Hybrid Power and Alternate Power Systems on Chair: Eric Dietz, <i>Purdue University</i>	
13.1	Analysis Natural Gas SOFC-GT-ST-ORC Quadruple Cycle for Power Generation Osagie Matthew, Hong Nguyen, Sen Nieh, Catholic University of America	204

13.2	Reducing Fuel Consumption through Hybrid Power Systems and Advanced Electronics	208
13.3	Experimental Testing and Analysis of an Asymmetrical Supercapacitor Module Device for Sustainable Power Delivery Wenhua H. Zhu, Bruce J. Tatarchuk, Auburn University	211
13.4	Hybrid Electrical Energy Storage System Implementing High Energy Supercapacitors Stephen Cordova, Steven C. Arzberger, Weibing Xing, <i>ADA Technologies</i>	215
13.5	1 kW, Single-Soldier Portable, JP-8 Generator	219
	on 14: Fuel Cells, Fuel Processing, and Storage III on Chair: Ian Kaye, <i>UltraCell</i>	
14.1	Cost Benefit Analysis of the Wearable Fuel Cell vs. the Conformal Wearable Battery as the Centralized Power Source for the Dismounted Soldier	220
14.2	Advanced PEM Fuel Cell MEAs for High Performance and Durability for Undersea and Space Power	224
14.3	Desulfurization of JP-8 Fuel with Mixed Metal Oxides for Fuel Cell Applications	228
14.4	Comparing Hydrogen and Hydrogen-Rich Reformate Enrichment of JP-8 in an Open Flame Michael L. Seibert, <i>US Army CERDEC</i> Sen Nieh, <i>The Catholic University of America</i>	232
	on 15: Alternative Energy Research on Chair: Herb Hess, <i>University of Idaho</i>	
15.1	Development of Nickel Zinc Technology for Military and Civilian Energy Storage Applications. Rhodri W. Evans, Stephen L. Vechy, Andrew C. Loyns, Christian Oettel, Alfonso S. Pensado, Borislav S. Leshtanski, Scott Lichte, <i>EnerSys Limited</i>	236
15.2	Betavoltaic Performance under Extreme Temperatures and Hybrid Configurations	240
15.3	A Theoretical Approach for using an Integrated Vision System to Do Quality Checks during the Production of Thermal Batteries Martin Bachicha, Sandia National Laboratories Graham E. Bartlett, Integrated Quality Group LLC	244
15.4	Using Human Factors to Develop Automated Energy Harvester Test Systems Julianne S. Douglas, Alexis Moy, José Collazo, US Army CERDEC Coutney A. Haynes, Maria K. Talarico, US Army Research Laboratory	248

	on 16: Secondary Lithium Batteries/Lithium-Ion Batteries I on Chair: David Ofer, <i>CAMX Power</i>	
16.1	High Power Li-ion Cells for Hybrid, More Electric Aircraft (MEA) and Directed Energy Weapon (DEW) Applications Frank J. Puglia, Stuart Santee, Svetlana Trebukhova, Boris Ravdel, Christine Cook, EaglePicher Technologies, LLC	252
16.2	Design and Implementation of a Centralized Power Supply for a Precision Guided 120mm Mortar Projectile Edward Bukowski, Peter Muller, Benjamin Topper, Douglas Petrick, U.S. Army Research Laboratory	256
16.3	Design, Construction, and Evaluation of 1000 V Valve Regulated Lead Acid (VRLA) and Lithium-Ion Batteries Matthew Martin, Christopher Williams, Kendal Mckinzie, David Wetz, Clint Gnegy-Davidson, Isaac Cohen, University of Texas at Arlington John Heinzel, Naval Surface Warfare Center	260
16.4	Li-Ion Conformal Wearable Battery Eivind Listerud, Mario Destephen, David Darch, <i>EaglePicher Technologies, LLC</i>	261
16.5	First Generation Lithium-Ion 6T Battery Development Neil Johnson, Chad Hartzog, Boris Mikhaylenko, Laurence Toomey, US Army RDECOM-TARDEC	265
16.6	Second Generation Lithium-Ion 6T Battery Development	266
	on 17: Fuel Cells, Fuel Processing, and Storage IV on Chair: Ian Kaye, <i>UltraCell</i>	
17.1	Effect of Oxygen Content at Various Steam to Carbon Ratios in a Distributed Reactor Richard Scenna, Terry Dubios, <i>US Army CERDEC CPI</i> Ashwani K. Gupta, <i>University of Maryland</i>	270
17.2	Production of Hydrogen from Various Feedstock Options Using Non-thermal Plasma Catalyzed Reforming Lyman J. Frost, Joseph J. Hartvigsen, S. Elango Elangovan, Ceramatec Inc.	274
17.3	Revealing Chemical Mechanisms of Solid Oxide Fuel Cells with In Operando Optical Studies Syed N. Qadri, John D. Kirtley, Naval Research Laboratory/National Research Council Postdoctoral Fellow Daniel A. Steinhurst, Nova Research, Inc. Bryan Eichhorn, University of Maryland Robert Walker, Montana State University Jeffrey C. Owrutsky, U.S. Naval Research Lab	278
17.4	High Temperature Polymer Electrolyte Fuel Cell Developments for the Mobile Power Generation from Logistic (Liquid) Fuels Carsten Cremers, Maria S. Rau, André Niedergesäß, Florina Jung, Karsten Pinkwart, Jens Tübke, Fraunhofer Institute for Chemical Technology ICT	282
17.5	Sulfur Tolerant, Compact, Portable Fuel Reformer System	286
	on 18: Metal-Air Batteries on Chair: K.M. Abraham, <i>E-KEM Sciences</i>	
18.1	High Current Pulse Discharge of Lithium Air Primary Battery Clifford Cook, Terrill Atwater, Paula Latorre, CERDEC CP&I Power Division Eugene Nimion, Steve Visco, PolyPlus Battery Company	287

18.2	Catalysis of the Oxygen Electrode Reactions in Lithium-air Batteries K. M. Abraham, Iromie Gunasekara, Sanjeev Mukerjee, Northeastern University Edward J. Plichta, Mary A. Hendrickson, US Army RDECOM CERDEC C2D	291
18.3	Lithium-Oxygen Cell based on Exfoliated Nitrogen-doped Graphene Nanosheets Cathodes and Ionic Liquid Electrolytes Padmakar Kichambare, Air Force Research Laboratory Stanley Rodrigues, Air Force Research Laboratory, Aerospace Systems Directorate	295
18.4	Correlation of Pore Size and Discharge Capacity in Li-air Batteries with Carbon Nanotubes Foam as Cathodes Chao Shen, Teng Liu, Mei Zhang, Jim Zheng, Florida State University Mary Hendrickson, Edward Plichta, Army Power Division	299
18.5	Ceramic Polymer Composite Electrolytes (CPCE) for a Wearable Li-Metal Battery Brian Henslee, Cornerstone Research Group Jitendra Kumar, University of Dayton Research Institute Guru Subramanyam, University of Dayton	303
	on 19: Aqueous Batteries (Primary and Secondary) on Chair: Ian Kowalczyk, <i>Maxpower Inc.</i>	
19.1	High Voltage Aqueous Redox Flow Batteries Based on Low Cost Electrolytes Christopher Swartz, Stephen Lipka, <i>University of Kentucky</i>	304
19.2	Next-generation Rechargeable Zinc Batteries based on Advanced 3D Electrode Designs Joseph F. Parker, Christopher N. Chervin, Debra R. Rolison, Jeffrey W. Long, U.S. Naval Research Laboratory	308
19.3	Smart Sealed Rechargeable Silver-Zinc Cells for Plug-and-Play, User-Friendly Batteries in Manned and Unmanned Undersea Vehicles	311
19.4	A Safe, High Energy Density Aluminum Subsea Energy Source Thomas Milnes, Open Water Power, Inc.	315
	on 20: Fuel Cells, Fuel Processing, and Storage V on Chair: Ian Kaye, <i>UltraCell</i>	
20.1	Low Cost Catalysts Synthesized from Non-Noble Metal Oxides and FeNx-Doped Graphene for Alkaline Fuel Cells	316
20.2	Development of Anion-Exchange Membrane Direct Methanol Fuel Cells: Stack Tests for a Portable Power Source Tilman Jurzinsky, Florina Jung, Carsten Cremers, Karsten Pinkwart, Jens Tübke, Fraunhofer Institute for Chemical Technology ICT	320
20.3	XPS Characterization of TiO ₂ for Photo-assisted Adsorptive Desulfurization Applications Mingyang Chi, Xueni Sun, Achintya Sujan, Bruce J. Tatarchuk, Auburn University	324
20.4	Smart Catalytic Performance of Pd Based Multi-metallic Nano Structures on MnO2 Support for DEFC: A Non-Pt and Non Carbon Approach	328
	on 21: Secondary Lithium Batteries/Lithium-Ion Batteries II on Chair: David Ofer, <i>CAMX Power</i>	
21.1	High Capacity, High Power, Multifunctional Lithium-Ion Polymer Cells for Military and Electric Vehicles, and Storage Applications Denguo Wu, J. Fan, American Lithium Energy Corporation Anh V. Le, Yu Qiao, University of California	329

21.2	Development of Higher Energy Density Li-Ion Batteries Christopher Lang, Kenneth Rosina, Peter Moran, <i>Physical Sciences Inc.</i>	332
21.3	Development of High Energy and High Power Lithium-ion Polymer Cells for LMAMS Munition and Small UAVs Zhiqiang Xu, Chul Chai, SKC Powertech Inc. William J. McMahan, Steven E. Horn, U.S. Army Aviation & Missile RD&E Center (AMRDEC)	333
21.4	High Energy Li-ion Cells Based on CAM-7™ Cathode Material	337
21.5	CAM-7/LTO Lithium-Ion Cells for Robust, High Power Batteries	341
	n 22: Charging Techniques and State-of-Health Technologies n Chair: Michael Eskra, <i>Eskra Technical Products, Inc.</i>	
22.1	Frequency-based Probes and Charging Methods for Li-ion Battery Safety	345
22.2	Neural Network Models Using Multiple Indicators for State of Charge and State of Health	348
22.3	Algorithms for Advanced Battery Management System Design Balakumar Balasingam, Niranjan Raghunathan, Krishna Pattipati, Yaakov Bar-Shalom, <i>University of Connecticut</i>	352
22.4	Faster Charging with Virtual Voltage Termination Technology	356
	n 23: Capacitors I	
Sessio	n Chair: Jim Zheng, <i>Florida State University</i>	
23.1	A Novel Li-ion Capacitor and Li-ion Battery Internally Hybrid Energy Storage Cell	357
23.2	Nanoscale Polymers as Solid-state Electrolytes and Dielectrics in Next-generation 3D Batteries and Capacitors Jeffrey W. Long, U.S. Naval Research Laboratory Jean M. Wallace, Nova Research Inc. Megan B. Sassin, Debra R. Rolison, U.S. Naval Research Laboratory	360
23.3	Hemp-derived Activated Carbons for Electrochemical Capacitors Wei Sun, Stephen M. Lipka, Christopher Swartz, David Williams, Fuqian Yang, <i>University of Kentucky</i>	364
23.4	Flexible, Printed Ultracapacitors for Use in Extreme Environments Erik S. Handy, SI2 Technologies, Inc. Kathleen A. Maleski, Tyler S. Mathis, Katherine L. Van Aken, Yury Gogotsi, Drexel University Guiseppe L. Di Benedetto, James L. Zunino III, U.S. Army Armament Research, Development and Engineering Center	368
Session	n 24: Battery Electrolytes and Interfaces	
Session	n Chair: Paula Ralston, <i>Eskra Technical Products, Inc.</i>	
24.1	Synergistic Effects of CsPF ₆ Additive and Propylene Carbonate Content on Enhanced Performances of Graphite Electrode in Lithium-Ion Batteries	372

24.2	WITHDRAWN	
24.3	Functional Ionic Liquid based Electrolytes Surya Moganty, NOHMs Technologies	.380
24.4	Solvation of the Sodium Ion in Carbonate Electrolytes Arthur von Wald Cresce, Joshua Allen, Selena Russell, US Army Research Laboratory Mallory Gobet, Jing Peng, Steven Greenbaum, Hunter College, City University of New York Reginald Rogers, Rochester Institute of Technology Kang Xu, US Army Research Laboratory	.381
	on 25: Molten Salt Batteries (Primary and Secondary) I on Chair: Geoffrey Swift, <i>EaglePicherTechnologies</i>	
25.1	Thermal Characterization of Molten Salt Battery Materials	
25.2	Evaluation of Aerogel Insulation for Thermal Batteries Joe Edington, Alex Cotton, <i>EaglePicher Technologies, LLC</i>	.386
25.3	Recent Advances in Thin Film Based Thermal Batteries Arsen G. Gevorkyan, Ronen Cohen, Ofer Raz, Rafael Ltd.	.390
25.4	Development and Application of New Heat Source Materials for Thermal Batteries	393
25.5	Electrolyte-Binder Powder Processing to Improve Manufacturability of Thermal Battery Separator Pellets Joseph Beck, Brian Perdue, Sandia National Laboratories	.397
	on 26: Capacitors II on Chair: Jim Zheng, <i>Florida State University</i>	
26.1	Lithium-ion/Supercapacitor Hybrid Systems for Use in Man-Portable Applications	.401
26.2	Lithium Ion Capacitor-Battery Hybrid Power System for Portable Military Applications Patricia H. Smith, Naval Surface Warfare Center Raymond B. Sepe, Jr., Kyle G. Waterman, Electro Standards Laboratories L. Jeff Myron, JSR Micro	405
26.3	Development of High Power Supercapacitors for Hybrid Energy Storage Systems for Soldiers Saemin Choi, Joseph Gallegos, Ryan Franck, Mahrokh Soltani, Leslie Alexander, <i>Inmatech</i>	.409
26.4	Metadielectric Materials Matthew R. Robinson, Paul Furuta, Ian Kelly-Morgan, Pavel Lazarev, Hoang Ly, Daniel Membreno, Capacitor Sciences, Inc.	.410
	on 27: Secondary Lithium Batteries/Lithium-lon Batteries III on Chair: David Ofer, <i>CAMX Power</i>	
27.1	V ₆ O ₁₃ /C as High Capacity Cathode for Lithium Ion Batteries Bijoy Kumar Das, Maximilian Fichtner, <i>Helmholtz Institute Ulm for Electrochemical Storage (HIU)</i> ,	.414
27.2	Development of High Energy Cathode Phosphates via High Throughput Methods Bin Li, Jen-Hsien Yang, Dee Strand, Wildcat Discovery Technologies	415
27.3	Advance Si Anode for High Energy Lithium Ion Cells Pu Zhang, Peter Aurora, Sequoyah King, Michael Wixom, Navitas Advanced Solutions Group	416
27.4	High Energy Li-ion Pouch Cells with Silicon-Carbon Composite Anodes Owen Crowther, Anson Yang, Aadil Benmayza, Hyun Joo Bang, Mario Destephen, EaglePicher Technologies	.420

27.5	Wide Temperature and Safer Li-Ion Cell Development	424
	on 28: Molten Salt Batteries (Primary and Secondary) II on Chair: Geoffrey Swift, <i>EaglePicherTechnologies</i>	
28.1	Accelerated Aging of Li(Si)/FeS2 Thermal Batteries Daniel Wesolowski, Ashley Allen, Chad Staiger, Andrea Ambrosini, Nancy Missert, Henry Peebles, Travis Anderson, Sandia National Laboratories	428
28.2	Lifetime Extension of Munitions Thermal Reserve Batteries Frank C. Krieger, Michael S. Ding, U.S Army Research Laboratory	429
28.3	Uncertainty Quantification, Verification, and Validation of a Thermal Simulation Tool for Molten Salt Batteries Bradley L. Trembacki, Sandia National Laboratories Shaun R. Harris, Sandia National Laboratories and Utah State University Edward S. Piekos, Scott A. Roberts, Sandia National Laboratories	433
28.4	Multi-Physics, Multi-Plateau Reaction Model for LiSi/FeS ₂ Batteries	437
	on 29: Molten Salt Batteries (Primary and Secondary) III on Chair: Geoffrey Swift, <i>EaglePicherTechnologie</i> s	
29.1	Enhanced Nanostructuring Approach for Thermal Battery Cathode Materials	441
29.2	Comparison of Natural and Synthetic Cathode Materials for Thermal Batteries	445
29.3	A High Power Thermal Battery based on High Voltage Cathode and Stable Electrolyte Pyoungho Choi, Ivy Mills, Sameer Singhal, <i>CFDRC</i> Mohan Sanghadasa, <i>US Army RDECOM AMRDEC</i>	449
	on 30: Secondary Lithium Batteries/Lithium-Ion Batteries IV on Chair: David Ofer, <i>CAMX Power</i>	
30.1	Li-Sulfur Chemistry: Challenges and Opportunities Surya Moganty, Nohms Technologies, Inc.	452
30.2	The Benefit of LiNO ₃ to the Cathode of Lithium-Sulfur Battery Sheng S. Zhang, U.S. Army Research Laboratory, RDRL-SED-C	453
30.3	Advanced Lithium-Sulfur Batteries with Hybrid Electrolyte and Bi-functional Cathode Jitendra Kumar, Priyanka Bhattacharya, <i>University of Dayton</i> Stanley Rodrigues, <i>AFRL, Dayton</i> Amarendra Rai, Rabi Bhattacharya, <i>UES, Inc. Services, Dayton</i> Guru Subramanyam, <i>University of Dayton</i>	457
30.4	High Energy Density Li/S Prototype Development	458
30.5	Electrochemical Performance of Li _x Mn _{2-y} Fe _y O _{4-z} Cl _z Synthesized Through In-Situ Glycine Nitrate Combustion Ashley L. Ruth, Paula C. Latorre, Terrill B. Atwater, <i>US Army</i>	462
	on 31: Wireless Power Transfer on Chair: Eric Ehrbar, <i>Busek Co, Inc.</i>	
31.1	Wireless Power Transmission for Military Applications	466

31.2	Warfighter Wireless Recharging System
31.3	Autonomously Adaptable Wireless Power Charging System
31.4	Alternative Energy-Platforms
	on 32: Secondary Lithium Batteries/Lithium-Ion Batteries V on Chair: David Ofer, <i>CAMX Power</i>
32.1	Update: Solvent Free, Additive Manufacturing Process for Lithium Electrodes
32.2	Additive Manufacturing Technique for Dry Sprayed Ceramic Separators for Lithium Ion
32.3	Development of Safe Rechargeable LI-S Battery Chemistries
32.4	Custom High Energy Batteries for Small Unmanned Air System Applications