2018 IEEE/ACM 6th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE 2018)

Gothenburg, Sweden 27 May – 3 June 2018

IEEE Catalog Number: ISBN:

CFP1882S-POD 978-1-5386-6175-8

Copyright © 2018, Association for Computing Machinery (ACM) All Rights Reserved

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

CFP1882S-POD IEEE Catalog Number: ISBN (Print-On-Demand): 978-1-5386-6175-8 ISBN (Online): 978-1-4503-5723-4

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2018 ACM/IEEE 6th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering

RAISE 2018

Table of Contents

Message from the ICSE 2018 General Chair _vii. Message from the RAISE 2018 Chairs _x. Organizing Committee for RAISE 2018 _xii. Program Committee for RAISE 2018 _xii. ICSE 2018 Sponsors and Supporters _xiii.
Natural Language and Text Data
Integrating a Dialog Component into a Framework for Spoken Language Understanding .1
Exploring the Benefits of Utilizing Conceptual Information in Test-to-Code Traceability .8
Complementing Machine Learning Classifiers via Dynamic Symbolic Execution: "Human vs. Bot Generated" Tweets .15
Web Data and Taxonomy
CodeCatch: Extracting Source Code Snippets from Online Sources .21
Semi-Automatic Generation of Active Ontologies from Web Forms for Intelligent Assistants .28

Ways of Applying Artificial Intelligence in Software Engineering .35
Defect Prediction
A Replication Study: Just-in-Time Defect Prediction with Ensemble Learning 42. Steven Young (Ryerson University), Tamer Abdou (Ryerson University), and Ayse Bener (Ryerson University)
Evaluating the Adaptive Selection of Classifiers for Cross-Project Bug Prediction .48. Dario Di Nucci (Vrije Universiteit Brussel), Fabio Palomba (University of Zurich), and Andrea De Lucia (University of Salerno)
Author Index 55