4th International Conference on Synthetic Aperture Sonar and Synthetic Aperture Radar 2018

Proceedings of the Institute of Acoustics Volume 40 Part 2

Lerici, Italy 5 - 7 September 2018

ISBN: 978-1-5108-7264-6

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2018) by Institute of Acoustics All rights reserved.

Printed by Curran Associates, Inc. (2018)

For permission requests, please contact Institute of Acoustics at the address below.

Institute of Acoustics 3rd Floor St Peter's House 45-49 Victoria Street St. Albans, Hertfordshire AL13WZ United Kingdom

Phone: +44(0) 1727 848195 Fax: +44(0) 1727 850553

ioa@ioa.org.uk

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: 845-758-0400 Fax: 845-758-2633

Email: curran@proceedings.com Web: www.proceedings.com

Papers
Papers marked with a * have been refereed.
Historical development of seabed mapping synthetic aperture sonar 1
Daniel D. Sternlicht 1, Michael P. Hayes 2, Roy E. Hansen 3
1 NSWC PCD, USA, 2 University of Canterbury, New Zealand, 3 FFI, Norway
Additional representations for improving for synthetic aperture sonar classification using convolutional neural networks* 11
Isaac D. Gerg1, David P. Williams2
1 The Pennsylvania State University Applied Research Laboratory, USA 2 Centre for Maritime Research and Experimentation, Italy
Multi-look performance assessment using high resolution SAR* 23
Malcolm Stevens, Richard Stroud Thales, UK
Comparison of co-registration techniques for synthetic aperture sonar images from repeated passes* 31
Torstein O. Sæbø1, Roy E. Hansen1, Vincent Myers2,
1 Norwegian Defence Research Establishment (FFI), Norway 2 Defence Research and Development Canada (DRDC), Canada
Repeat-pass micro-navigation and bathymetry estimation using interferometric synthetic aperture sonar* 39
Benjamin Thomas(1), Alan Hunter(1)Samantha Dugelay(2)
1 University of Bath, UK, 2 NATO STO CMRE, Italy
Residual risk maps for performance assessment of autonomous mine countermeasures using synthetic aperture sonar* 47
Bart Gips, Christopher Strode, Samantha Dugelay NATO STO-CMRE, Italy
In-mission MCM performance evaluation for AUV-mounted sonar 57
Marc Geilhufe, Thomas R. Krogstad, Øivind Midtgaard, Else-Line M. Ruud, Martin S. Wiig Norwegian Defence Research Establishment (FFI), Norway
The high resolution low frequency synthetic aperture sonar (HR-LFSAS) project 66
Yan Pailhas, Stefano Fioravanti, Samantha Dugelay NATO STO-CMRE, Italy
Operator tools and performance assessment for automated seabed change detection 73
Daniel D. Sternlicht, 1Tesfaye G-Michael1, Jeannine Abiva1, Anna M. Crawford2, Shawn F.
Johnson 3, Torstein Sæbø, Ø. Midtgaard 4
1 NSWC PCD, USA, 2 DRDC, CANADA, 3 ARL PSU, USA, 4 FFI, NORWAY
Quantifying the negative impact of breaking internal waves on interferometric synthetic aperture sonar* 83
Roy E. Hansen 1, Anthony P. Lyons 2, Daniel A. Cook 3, Torstein Ø. Sæbø 1
1 Norwegian Defence Research Establishment (FFI), Norway, 2 University of New Hampshire, USA, 3 Georgia Tech Research Institute, USA
Effects of reverberation and noise on the estimation of synthetic aperture sonar

	lti-look coherence* 91
	THONY P. LYONS 1, JONATHAN L. KING 2, DANIEL C. Brown 3,
	NIVERSITY OF NEW HAMPSHIRE, USA, 2 NAVAL SURFACE WARFARE CENTER, USA, 3 PENNSYLVANIA TE UNIVERSITY, USA
	reasing navigation effectiveness in GPS denied environments using through-the- nsor SAS techniques* 99
Wa	rren A. Connors 1, Alan J. Hunter 2, Jeremy Dillon 3
1 D	efence R&D Canada, Canada, 2 University of Bath, UK, 3 Kraken Robotics, Canada
	alysis and exploitation of complex SAR phenomena produced from vibrating gets* 107
	ndon Corbett1, Daniel Andre1, Darren Muff2, Mark Finnis2, David Blacknell2 ranfield University, UK, 2 DSTL, UK
Tra	ansfer-learning with deep neural networks for mine recognition in sonar images*
	ada Warakagoda, Øivind Midtgaard,
No f	wegian Defence Research Establishment (FFI), Norway
Coı	nvolutional neural network transfer learning for underwater object classification*
	TID P. WILLIAMS, TO STO CMRE, ITALY
	erpretable semi-supervised deep learning with synthetic aperture sonar for comatic target recognition* 132
	nny L. Chen, Jason E. Summers, Jason M. Trader, A, USA
Sup	pervised deep learning classification for multiband synthetic aperture sonar* 1
	thew Emigh, Bradley Marchand, Matthew Cook, James L Prater, al Surface Warfare Center, USA
Syr	nthetic aperture sonar phase correction for a curved projector 148
Cia	ran Sanford1, Alan Hunter1, Allan Willcox2
1 U	niversity of Bath, UK, 2 Picotech Ltd, UK
Eva	aluation of a non-coherent synthetic aperture sonar autofocus* 156
	CENT MYERS 1, DUNCAN P. WILLIAMS 2, JEREMY DILLON 3
	efence R&D Canada, Canada, 2 Dstl Porton Down, UK, 3 National Research Council, lada
Cal	ibration transponder measurement of synthetic aperture sonar beampatterns*
	an O'Donnell, Shaun D Anderson, Marsal Bruna, Jake Robinson, Daniel A Cook rgia Tech Research Institute, USA
An	improved SAR-near-field spatially variant basebanding technique* 173
Dan	iel Andre1, Mark Finnis1, David Blacknell2
1 C	ranfield University, UK, 2 DSTL Scientific Intelligence Team, UK
Ada	aptive waveform design for interference mitigation in gapped spectrum SAR*
	ire Tierney, Bernard Mulgrew,
_	NBURGH UNIVERSITY, UK

Side-looking sonar Image quality assessment using reference targets* 191 Anna van Velsen, Robbert van Vossen, Guus Beckers
TNO Defence, The Netherlands
Data driven corrections to multistatic 3D through-wall SAR imagery* 199
James Elgy1, Daniel Andre1, Mark Finnis1, David Blacknell2
1 Cranfield University, UK, 2 DSTL Scientific Intelligence Team, UK
Synthetic aperture sonar despeckling based on total variation regularization* 209
Marsal A. Bruna, David L. Pate, Daniel A. Cook, Georgia Tech Research Institute, USA
Preliminary results from attempts to determine SAS array coherence from image metrics* 219
James L. Prater1, Holger Schmaljohann2
1 Naval Surface Warfare Center, USA, 2 Naval Maritime Technology and Research, USA
Measuring human assessed complexity in synthetic aperture sonar imagery using the ELO rating system. 227
Brian Reinhardt, Pennsylvania State University, USA
Approaches to false alarm reduction for synthetic aperture sonar change detection 235
Jeannine Abiva 1, Tesfaye G-Michael 1, Øivind Midtgaard 2, Vincent Myers 3, Rodney Roberts 4
1 Naval Surface Warfare Center, USA, 2 Norwegian Defence Research Establishment (FFI), Norway, 3 The Defence Research and Development Canada (DRDC), Canada 3 Florida State University, USA
Impact and limitations imposed by stop-and-hop approximation on CSAS imagery* 242
Ulrich Herter (1), Holger Schmaljohann (2), Thomas Fickenscher (1)
1 Helmut Schmidt University, Germany 2 Bundeswehr Technical Center for Ships and Naval Weapons, Germany
Automated change detection in streaming SAS imagery 250
Øivind Midtgaard, Norwegian Defence Research Establishment (FFI), Norway