American Gear Manufacturers Association Fall Technical Meeting 2018

Oak Brook, Illinois, USA 24 - 26 September 2018

ISBN: 978-1-5108-7268-4

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2018) by American Gear Manufacturers Association All rights reserved.

Printed by Curran Associates, Inc. (2018)

For permission requests, please contact American Gear Manufacturers Association at the address below.

American Gear Manufacturers Association 1001 N. Fairfax Street Suite 500 Alexandria, VA 22314-1587 USA

Phone: (703) 684-0211 Fax: (703) 684-0242

webmaster@agma.org

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2633 Email: curran@proceedings.com Web: www.proceedings.com

2018 Fall Technical Meeting Papers

18FTM01. Filling Some Gaps in Spline Design Guidelines: Centering, Friction, and Misalignment Author: Stephen McKenny

International spline standards and other widely used published documents have detailed definitions of twodimensional spline geometry, and while they cover basic axial effects and stresses, more can be provided for design engineers. Results from an analytical study of misalignment factors and an experimental study of centering forces are discussed to provide information to help refine calculation methods. These include: how to calculate the effective pressure angle of straight-sided splines that must be used to accurately determine normal and radial loads; how to calculate the effective centering force of a spline pair; how to calculate the centering moment of a spline with 'topping'; an update to current publications; and an update to the calculation of the maximum axial force that a spline can transmit via friction.

Pg. 1

18FTM02. Methods to Determine Form Diameter on Hobbed External Involute Gears Author: Shuo Zhang

Two mathematical methods have been developed to be used for the calculation of true involute form diameter when specialized software or original gear designer information is not easily accessible. These methods are designed for external involute gears produced by the hobbing process, possibly followed by a finishing operation. Method A is a more precise match, but it requires special inputs that may be time consuming without special software. Method B, although not as accurate, still has relative error of TIF diameter below 0.1% over wide ranges of gear design parameters. Method B is also easy to apply and can be integrated into most existing gear design programs.

Pg. 16

18FTM03. Optimization of a Rack and Pinion Design for Offshore Jack-Up Applications Author: Adrian Nowoisky

Lift boats or Jack up oil rigs are essential for the oil and gas industry. One offshore jacking system is pinion and rack to elevate legs and hull in operation. It is well known that rack and pinion of such applications exceed the permissible contact stress by the factor of 2 to 5. The design and evaluation of such systems is still a technical challenge. The pinion will be typically highly modified and analyzed based on the Hertzian contact stress theory of two cylinders in contact. This method will show how to start with a basic rack and pinion design. The true involute profile of the pinion will be replaced with a multi radii profile. In a second step, the pinion design will be analytical optimized to reduce the contact stress and improve the life expectation. The influence of major gear parameter such as module, profile shift coefficient as well as the pressure angle will be analyzed and explained. The results of the final pinion will be compared with an existing pinion design to evaluate and discuss a reuse of existing hardware. The results of the final designs will be verified by a numerical method. This paper demonstrates the impact of major gear parameters for a pinion design and their impact on the life expectation. The benefit of a custom pinion design and how much improvement can be achieved with emphasizing the design process properly will be shown. Furthermore it shall serve as a guideline for best practice to design a rack and pinion for offshore jacking applications.

Pg. 32

18FTM04. Gearbox Development for the Food and Beverage Processing Industry Author: Sandeep V. Thube

Industry-specific power transmission needs can be efficiently served by a streamlined product development process. The 'Food and Beverage' industry has a variety of gearbox applications which are regulated by governmental industry standards, such as NSF and FDA. The scope of this paper is to design and construct a gearbox in compliance with these standards, which may be substantially different from typical industrial requirements.

The paper discusses details of a gearbox development for food and beverage applications. It mainly includes stainless steel housing and shaft designs, as well as oil seal, bearing and lubricant selections. The development process utilizes tools, viz. Quality Function Deployment (QFD), Failure Mode Evaluation Analysis (FMEA), computational 'Finite Element Analysis' (FEA), and 3D printing followed by prototype testing. QFD is used to prioritize features to be included in the product. Potential failures of the gearbox are identified with FMEA. The structural and thermal optimization of the newly designed housing is performed using FEA. 3D printing is utilized to find design defect at early stage, and validate the gearbox assembly procedure. Minimizing the number of physical prototype testing and iterations is the primary objective for the utilization of these tools.

Pg. 45

Author: Gerhard Flores

Flat and curved surfaces with the functionality of high static friction are increasingly needed for force-fitted nonslip power transmissions. This is especially true for con rod and cam structuring for high torque resistance or front face connections of sprockets, gears, or cam shaft adjustments. Expensive solutions such as diamond layers, diamond coatings, or form fitting design are increasingly being substituted. A modified laser process with defined exposed micro structures is the alternative for innovative manufacturing. Exposed micro melting burrs of smaller micrometer height with martensitic material structures are the precondition for the required high friction. So, such high static friction surfaces can be produced economically with repeatability of small tolerances in high-volume productions.

18FTM06. Design and Optimization of a Hybrid Vehicle Transmission Author: Massimiliano Turci

Hybrid vehicles seem to be the fastest solution for the containment of consumption and of pollution for personal transport. The designer of a hybrid transmission has to address additional issues with respect to the classical cases, in particular the high speed of the electric unit and the bidirectional motor/generator operation. In this case, a lot of attention should be paid to how to consider the four combinations of signs for torque and speed in the load spectrum. This paper discusses several approaches for the alternating bending factor, the effects of the asymmetric crowning (especially the helix modification tapered or parallel) and how to consider the housing stiffness in the TCA. Also included is an interesting solution from the kinematic point of view, the compound planetary, relatively well-known in the automotive, but much less so in industrial gearbox design.

Pg. 75

18FTM07. Influence of Thermal Distortion on Spur Gear Tooth Contact Authors: Jon Larrañaga, Ibai Ulacia, Aurea Iñurritegi, Aitor Arana, Jon German, and Julen Elizegi

The reduction of component size and oil volume of current automotive and aeronautical transmissions, along with the increasing input speeds, are pushing gear teeth bulk temperatures to their scuffing limit. Even with development of new lubricant additives and coatings, high temperatures may produce other issues. This paper analyzes the effects of thermal distortion on the profile geometry and tooth contact parameters in the transverse plane of a spur gear by calculating the steady-state temperature distribution relevant to immersion depth, sump temperature, and lubrication regime in the contact area. Then, thermally distorted geometry and tooth contact analysis is computed by means of a 2D finite element model where load distribution, transmission error, backlash, and other parameters will be analyzed. The results of the study will allow one to set the limits of design backlash to avoid gear jamming and to size the initial profile shift or tooth modifications to reach the desired contact behavior.

Pg. 92

18FTM08. Oil-Off Characterization Method Using In-Situ Friction Measurement for Gears Operating Under Loss-of-Lubrication Conditions

Authors: Aaron C. Isaacson and Matthew E. Wagner

The oil-off performance evaluation of gears is of significant interest to the Department of Defense and various rotorcraft manufacturers, so that the aircraft can safely land in an accidental loss-of-lubricant situation. However, unlike typical gear failure modes, gear failure in an oil-off situation is very rapid and likely catastrophic. This paper describes the procedure and instrumentation utilized for an oil-off test to measure the frictional loss in the test gear mesh and the "air" temperature just out of mesh. Sound and vibration data was also recorded during testing. Data from typical failures showing the detection of scuffing onset and its progression to catastrophic failure for gears made from several aerospace alloy steels is presented.

Pg. 105

18FTM09. Application of Finite Element Analysis for the Strain Wave Gear Tooth Surfaces Design and Modifications

Authors: Zhiyuan Yu and Kwun-Lon Ting

This paper is on a rigorous definition and parametric study of tooth surface modification of the strain wave gear. You will see that optimal modification for a sample strain wave gear is found from FEA and tested by contact pattern, transmission error, and life cycling experiments. The resulting innovative design with modified fully conjugate tooth surface improves accuracy, backlash, and the life of the existing design.

Pg. 122

18FTM10. Experimental Study on the Pitting Detection Capabilities for Spur Gears Using Acoustic Emission and Vibration Analysis Methods

Authors: Mateusz Grzeszkowski, C. Gühmann, P. Scholzen, Christoph Löpenhaus, S. Nowoisky, and G. Kappmeyer

Pg. 65

This paper discusses an experimental investigation on spur gears to characterize the pitting degradation process using monitoring features. Previous investigations have revealed that pitting has an impact on the gear vibration behavior. But is it possible to detect pitting at an early stage using acceleration sensors and acoustic emissions (AE) sensors to avoid consequential damages and subsequent correction activities? The paper will discuss this experimental investigation on spur gears to characterize the pitting degradation process using monitoring features. Also included is a discussion of the results of the investigation, including how the results show that a detection of pitting is possible several hours before complete gear failure, and more.

18FTM11. Optimization of Power Density by Local Gear Failure Modeling Authors: Marco Kampka, Christian Brecher, Christoph Löpenhaus

Power density is a key factor in gear design. Increasing the power density enables engineers to use smaller gears for their applications, which leads to smaller and lighter gear boxes. The most common way to design gears is using industry standards in which material strength can be obtained either from fatigue limit tables or by means of empirical formulae. Due to limited empirical data, a lot of averaging and approximations are used to make the available standards applicable to a wide range of applications. To design the gear closer to the power density limit, a high level of information is necessary. The paper shows how local FEA-based calculation approaches can be used to design gears closer to their power density limits for pitting, tooth root breakage, and flank fracture. The calculation results will be validated in running tests on different test rigs.

Pg. 154

Pg. 137

18FTM12. Load Intensity Distribution Factor Evaluation from Strain Gauges at the Gear Root

Authors: José Calvo Irisarri, Unai Gutierrez Santiago, Alfredo Fernández Sisón, and Pedro Olalde Arce Strain gauges are commonly used to obtain the load intensity distribution on the flank of a gear mesh. To get the load distribution on the flank, the strain data must be processed and changed into load intensity distribution on the tooth flank. Research has been conducted on the best methodology to place strain gauges when calculating load intensity distribution on the flanks of a gear. This paper discusses these research methods that use FEM models and his analysis of how to deal with the effect of strain gauge positioning errors, in order to find the optimal placement.

18FTM13. Impact of Root Geometry Manufacturing Deviations from a Theoretical Hob Rack on Gear Bending

Gear reliability is a key requirement of any automotive transmission. Two common failure modes of gears are pitting and bending fatigue. So, the total gearing reliability depends upon the bending and pitting reliability. This paper discusses a comparison of a theoretical root fillet geometry generated by the hob racks of gear drawings to an actual measured tooth fillet geometry of manufactured gears, which determines the impact of the different root

fillet geometries on tooth bending stresses. An emphasis is placed on the importance of using a root fillet geometry truly representative of the actual gears in production for the bending stress calculation so that the

Pg. 175

Pg. 193

Authors: Rahul V. Nigade and Carlos H. Wink

Stress

18FTM14. Fatigue Life Predictions of Spherical Gear Couplings Authors: Ibai Ulacia, Jon Larrañaga, Aitor Arana, Aurea Iñurritegi, and Julen Elizegi

Spherical gear couplings are mechanical components that allow transmitting torque by means of equally spaced teeth. Modern roll-leveling machines are characterized to level high-strength steels by using small rolls under high torque requirements. The small size of the rolls decreases the space between the spline couplings, causing misalignments up to 7 degrees. This paper discusses a geometry-generating procedure that has been developed for both the hub with internal teeth and the crowned teeth shaft in spherical gear couplings. A finite element model has been developed to study the effect of backlash and misalignment on the number of teeth in contact and root stresses. Finally, fatigue tests are performed, and numerical predictions are correlated with experimental results.

Pg. 202

18FTM15. Potentials of Free Root Fillets in Planetary Gearbox Applications Authors: Jonas Pollaschek, Christian Brecher, Christoph Löpenhaus

Planetary gear stages are commonly used in many different fields of application, including wind turbine and automotive gearboxes. This paper discusses the potential for increased root load carrying capacity at the planet gear of a planetary gear application. The approach considers local material characteristics such as hardness, fatigue strength, and mean stress sensitivity, as well as residual stresses and different stress rations that result from the mesh with the sun and ring gear. It offers a detailed tooth contact analysis based on the Finite Element Method. The result of this work allows for the possibility of changes in the gear design.

required bending reliability can be achieved in the field.

18FTM16. Microgear Measurement Standards: Comparing Tactile, Optical and Computed Tomography Measurements

Authors: Stephan Jantzen, Martin Stein, Karin Kniel, and Andreas Dietzel

Microgears are widely used in industry, as they are essential components of gearboxes used in precision engineering, medical technology, and robotics. This paper discusses the development of a new internal involute microgear measurement standard for research and industry. A comparison between the tactile calibration performed using a micro coordinate measuring machine (μ CMM) and the measurement results obtained by means of a computer tomography (CT) system and optical CMM will be presented. The new results, compared with the results of the comparison measurements of the external microgear measurement standard, are discussed. The results and discussion will provide an overview of the state of the art in microgear metrology.

Author: Yefim Kotlyar This paper discusses Generative Gear Milling, an innovative software feature for gear cutting. The involute generative principle is based on an incremental positioning of a simple and inexpensive milling "disk" cutter with trapezoidal or parallel sides on the "line of action." The paper outlines the needs for this procedure and the applications of generative milling. And, the author discusses the benefits of Generative Gear Milling, including improved efficiency; reduced cutter cost and delivery time; and expanded pitch range capability.

Pg. 254

Pg. 231

18FTM18. Reducing Tool Wear in Spiral Bevel Gear Machining with the Finite Element Method Authors: Fang Hou, Yantao Zhang, Syed Wasif, Pete Mattson, and Kerry Marusich

Due to the complexity of spiral bevel gear machining, the cutting tools can be a significant cost of gear manufacturing. Unlike the price of material which is fixed by the market, the cost of tooling and subsequent regrinding can be reduced through reducing tool wear and increasing tool life. This paper discusses an alternative approach to physical testing for predicting and reducing tool wear using the finite element method. This virtual design approach utilizes real-world cutting tool geometry, automatically generated gear blanks, and known process kinematics to simulate the cutting process. Additionally, lessons learned, potential benefits and pitfalls of this approach to tool wear reduction and future work will be discussed.

Pg. 273

18FTM19. Method for High Accuracy Cutting Blade Inspection Authors: Haris Ligata and Hermann J. Stadtfeld

18FTM17. Generative Gear Milling

Inspection of the cutting blade is a crucial step in the manufacturing of bevel gears. The proper blade geometry ensures that the desired gear tooth form can be achieved. The accuracy of the process can be compromised when the blade consists of several small sections, or when dust particles, surface roughness, or floor vibration during the data acquisition occurs. This paper highlights a new method for improving the robustness of the inspection process in such cases. A proposal for using larger portions of the blades to evaluate the properties of the small features will be shown. The paper discusses the methods developed and provide several examples of gears made using these methods.

Pg. 286

18FTM20. Fully Automated Roughness Measurement on Gears, Even on the Shop Floor Author: Georg Mies

For many years, the focus of the design of precision components for transmissions has been on optimizing gear geometry. The work in this area has come so far that we are now seeing a shift from design to a concentration on surface quality of the functional surfaces. The roughness of highly stressed gear flanks has significant influences on noise, wear, and power loss. Thanks to new or improved machining technologies, extremely smooth surfaces can now be produced cost-effectively. The need now arises for reliable measurement of roughness of gears. This paper discusses the newest solution that enables fully automatic measurements of gear geometry and roughness in one clamping.

Pg. 300

18FTM21. Integrating Non-Contact Metrology in the Process of Analysis and Simulation of Gear Drives Authors: Alfonso Fuentes-Aznar and Ignacio Gonzalez-Perez

Non-contact metrology allows for a very fast collection of points on the measured gear tooth surfaces, with data rates that can be as high as millions per second. It is a wealth of information about the gears. This paper discusses using this data for reverse engineering, noise root cause analysis, or as a baseline for stress information for further gear design optimization. Also presented is an approach on integration of non-contact metrology to enhance current methodology of analysis and simulation of gear drives.

Pg. 388

compared to more commonly used gear steels, and an analysis is presented that illustrates a potential for either a 30% reduction in gear set mass or a 45% increase in gear set torque capacity. Pg. 373

18FTM26. Reliability of Gears – Determination of Statistically Validated Material Strength Numbers

Authors: Michael Hein, Michael Geitner, Thomas Tobie, Karsten Stahl, and Burkhard Pinnekamp This paper is intended to provide a review on the statistical reliability behavior of cylindrical gears with regard to pitting and tooth root breakage failures. A mathematical reliability approach was developed and drafted to expand standardized load capacity calculation methods. The deduced models and procedures allow the consideration and conversion of different reliability levels in the design process of cylindrical gears. Practical examples of the research are provided.

18FTM23. Lean Heat Treatment for Distortion Control Authors: Volker Heuer and David Bolton

Components

Author: E. Buddy Damm

Controlling distortion is of key importance during the case hardening process in the production of gear components. By effective control of distortion and the variation of distortion, significant costs in post-heat treatment machining processes can be avoided. This paper focuses on new vacuum furnace designs that allow the treatment of small batches in a single layer of parts (2D treatment), which allows for easy automated loading and unloading of the fixture-trays. When performing case hardening, the components are Low Pressure Carburized (LPC) at high temperatures, followed by gas quenching. The treatment in single layers offers an optimum quality with temperature homogeneity; quench homogeneity; and distortion control.

Pg. 344

18FTM24. Residual Stress Measurement of Case Hardened Steel Gears Author: David Easton

Aerospace gear components are required to demonstrate excellent load carrying and endurance characteristics. Case hardened steels are often utilized for these parts, but often residual stresses are developed. These residual stresses are known to have a significant effect on distortion during the heat treatment and machining processes. This paper presents research conducted on gears manufactured from two different starting points: as-received bar material and hot-forged billet. This paper will also discuss the results of the work and compare the two sets of spur gears.

18FTM25. Combining Ultra-High-Strength and Toughness for Affordable Power Densification in Steel Gears

In the last few years, improvements in clean steel technology have been coupled with development of new ultrahigh-strength, high-toughness steels. These technologies provide affordable solutions for critical, power-dense components. This paper reviews and compares steel cleanness metrics between re-melted steels and steels that meet AGMA grade 3 cleanness. The new steels provide yield strengths ranging from 175-210 KSI, ultimate tensile strengths ranging from 230-250 KSI, and Charpy impact energies ranging from 35 to 50 ft.-lbs., allowing these grades to provide longer life, more power, and/or lighter weight. The higher fatigue strength of these steels is

Pg. 360

18FTM22. Integrated Approach for Gear Testing of High-Performance Clean Steels Authors: Dieter Mevissen, Christoph Löpenhaus, Lily Kamjou, and Elias Löthman

The power density of gearboxes is continuously increased by different research activities. Besides new material developments, the cleanliness of steels comes to the forefront in order to meet future requirements regarding load carrying capacity of gears. This paper discusses an integrated approach for gear testing of steels. In order to determine the differences between steels of different cleanliness levels, the testing approach has to be improved as a whole.

Pg. 330