2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS 2018)

Paris, France 7-9 October 2018

Pages 1-496

IEEE Catalog Number: ISBN:

CFP18053-POD 978-1-5386-4231-3

Copyright © 2018 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP1
ISBN (Print-On-Demand):	978-1
ISBN (Online):	978-1
ISSN:	1523-

CFP18053-POD 978-1-5386-4231-3 978-1-5386-4230-6 1523-8288

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2018 IEEE 59th Annual Symposium on Foundations of Computer Science **FOCS 2018**

Table of Contents

FOCS 2018 Preface	XV
FOCS 2018 Organizing Committee and Sponsors	. xvi
FOCS 2018 Program Committee	xvii
FOCS 2018 External Reviewers	xviii
FOCS 2018 Awards	xxii

Session 1.1.A

Balancing Vectors in Any Norm Daniel Dadush (Centrum Wiskunde & Informatica), Aleksandar Nikolov (University of Toronto), Kunal Talwar (Google Brain), and Nicole Tomczak-Jaegermann (University of Alberta)	1
Metric Sublinear Algorithms via Linear Sampling Hossein Esfandiari (Google Research) and Michael Mitzenmacher (Harvard University)	11
Approximating the Permanent of a Random Matrix with Vanishing Mean Lior Eldar (N/A) and Saeed Mehraban (Massachusetts Institute of Technology)	23
Log-Concave Polynomials, Entropy, and a Deterministic Approximation Algorithm for Counting Bases of Matroids	35

Session 1.1.B

A Short List of Equalities Induces Large Sign Rank Arkadev Chattopadhyay (Tata Institute of Fundamental Research) and Nikhil Mande (Tata Institute of Fundamental Research)	47
Simple Optimal Hitting Sets for Small-Success RL William Hoza (University of Texas at Austin) and David Zuckerman (University of Texas at Austin)	59
Hardness Magnification for Natural Problems Igor Carboni Oliveira (University of Oxford) and Rahul Santhanam (University of Oxford)	65

Counting t-Cliques: Worst-Case to Average-Case Reductions and Direct Interactive Proof	
Systems	77
Oded Goldreich (Weizmann Institute of Science) and Guy Rothblum	
(Weizmann Institute of Science)	

Session 1.2.A

A Faster Isomorphism Test for Graphs of Small Degree Martin Grohe (RWTH Aachen University), Daniel Neuen (RWTH Aachen University), and Pascal Schweitzer (TU Kaiserslautern)	. 89
Graph Sketching against Adaptive Adversaries Applied to the Minimum Degree Algorithm Matthew Fahrbach (Georgia Institute of Technology), Gary L. Miller (Carnegie Mellon University), Richard Peng (Georgia Institute of Technology), Saurabh Sawlani (Georgia Institute of Technology), Junxing Wang (Carnegie Mellon University), and Shen Chen Xu (Facebook)	101
Faster Exact and Approximate Algorithms for k-Cut Anupam Gupta (Carnegie Mellon University), Euiwoong Lee (New York University), and Jason Li (Carnegie Mellon University)	113

Session 1.2.B

Delegating Computations with (Almost) Minimal Time and Space Overhead Justin Holmgren (Massachusetts Institute of Technology) and Ron Rothblum (Massachusetts Institute of Technology and Northeastern University)	124
Computational Two-Party Correlation: A Dichotomy for Key-Agreement Protocols Iftach Haitner (Tel Aviv University), Kobbi Nissim (Georgetown University), Eran Omri (Ariel University), Ronen Shaltiel (University of Haifa), and Jad Silbak (Tel Aviv University)	136
PPP-Completeness with Connections to Cryptography Katerina Sotiraki (Massachusetts Institute of Technology), Manolis Zampetakis (Massachusetts Institute of Technology), and Giorgos Zirdelis (Northeastern University)	148

Session 1.3.A

Hölder Homeomorphisms and Approximate Nearest Neighbors Alexandr Andoni (Columbia University), Assaf Naor (Princeton University), Aleksandar Nikolov (University of Toronto), Ilya Razenshteyn (Microsoft Research), and Erik Waingarten (Columbia University)	159
Near-Optimal Approximate Decremental All Pairs Shortest Paths Shiri Chechik (Tel-Aviv University)	170

Bloom Filters, Adaptivity, and the Dictionary Problem
Session 1.3.B
MDS Matrices over Small Fields: A Proof of the GM-MDS Conjecture
Deterministic Document Exchange Protocols, and Almost Optimal Binary Codes for Edit Errors 200 Kuan Cheng (Johns Hopkins University), Zhengzhong Jin (Johns Hopkins University), Xin Li (Johns Hopkins University), and Ke Wu (Johns Hopkins University)
Improved Decoding of Folded Reed-Solomon and Multiplicity Codes
Session 1.4.A
An Improved Bound for Weak Epsilon-Nets in the Plane
Session 1.4.B
The Complexity of General-Valued CSPs Seen from the Other Side
Session 1.5
Non-Black-Box Worst-Case to Average-Case Reductions within NP
Classical Verification of Quantum Computations
Session 2.1.A
Contextual Search via Intrinsic Volumes

Towards Learning Sparsely Used Dictionaries with Arbitrary Supports Pranjal Awasthi (Rutgers University) and Aravindan Vijayaraghavan (Northwestern University)	283
Learning Sums of Independent Random Variables with Sparse Collective Support Anindya De (Northwestern University), Philip M. Long (Google), and Rocco A. Servedio (Columbia University)	297
Recharging Bandits	309

Session 2.1.B

	320
Zvika Brakerski (Weizmann Institute), Paul Christiano (Open AI), Urmila Mahadev (University of California, Berkeley), Umesh Vazirani (University of California, Berkeley), and Thomas Vidick (California Institute of Technology)	
Classical Homomorphic Encryption for Quantum Circuits Urmila Mahadev (University of California, Berkeley)	332
Classical Lower Bounds from Quantum Upper Bounds Shalev Ben-David (University of Waterloo), Adam Bouland (University of California, Berkeley), Ankit Garg (Microsoft Research), and Robin Kothari (Microsoft Research)	339
Quantum Algorithm for Simulating Real Time Evolution of Lattice Hamiltonians Jeongwan Haah (Microsoft Research), Matthew Hastings (Microsoft Research), Robin Kothari (Microsoft Research), and Guang Hao Low (Microsoft Research)	350

Session 2.2.A

Graph Sparsification, Spectral Sketches, and Faster Resistance Computation, via Short Cycle Decompositions	361
Timothy Chu (Carnegie Mellon University), Yu Gao (Georgia Institute of Technology), Richard Peng (Georgia Institute of Technology), Sushant Sachdeva (University of Toronto), Saurabh Sawlani (Georgia Institute of Technology), and Junxing Wang (Carnegie Mellon University)	
A Matrix Chernoff Bound for Strongly Rayleigh Distributions and Spectral Sparsifiers from a few Random Spanning Trees	373
Spectral Subspace Sparsification Huan Li (Fudan University) and Aaron Schild (University of California, Berkeley)	385

Session 2.2.B

Near-Optimal Communication Lower Bounds for Approximate Nash Equilibria Mika Göös (Harvard University) and Aviad Rubinstein (Harvard University)	397
An End-to-End Argument in Mechanism Design (Prior-Independent Auctions for Budgeted Agents) Yiding Feng (Northwestern University) and Jason D. Hartline (Northwestern University)	404
The Sample Complexity of Up-to- Multi-Dimensional Revenue Maximization Yannai A. Gonczarowski (Hebrew University of Jerusalem and Microsoft Research) and S. Matthew Weinberg (Princeton University)	416

Session 2.3.A

Improved Online Algorithm for Weighted Flow Time Yossi Azar (Tel Aviv University) and Noam Touitou (Tel Aviv University)	427
Fusible HSTs and the Randomized k-Server Conjecture	438
An ETH-Tight Exact Algorithm for Euclidean TSP Mark de Berg (Eindhoven University of Technology), Hans L. Bodlaender (Eindhoven University of Technology and Utrecht University), Sándor Kisfaludi-Bak (Eindhoven University of Technology), and Sudeshna Kolay (Eindhoven University of Technology)	450
0/1/All CSPs, Half-Integral A-Path Packing, and Linear-Time FPT Algorithms	462
On Subexponential Parameterized Algorithms for Steiner Tree and Directed Subset TSP on Planar Graphs	474
Dániel Marx (Hungarian Academy of Sciences), Marcin Pilipczuk (University of Warsaw), and Michał Pilipczuk (University of Warsaw)	

Session 2.3.B

Deterministic Factorization of Sparse Polynomials with Bounded Individual Degree Vishwas Bhargava (Rutgers University), Shubhangi Saraf (Rutgers University), and Ilya Volkovich (University of Michigan, Ann Arbor)	. 485
Testing Graph Clusterability: Algorithms and Lower Bounds Ashish Chiplunkar (EPFL), Michael Kapralov (EPFL), Sanjeev Khanna (University of Pennsylvania), Aida Mousavifar (EPFL), and Yuval Peres (Microsoft Research)	497

Finding Forbidden Minors in Sublinear Time: A n^1/2+o(1)-Query One-Sided Tester for Minor Closed Properties on Bounded Degree Graphs Akash Kumar (Purdue University), C. Seshadhri (University of California, Santa Cruz), and Andrew Stolman (University of California, Santa Cruz)	. 509
Privacy Amplification by Iteration Vitaly Feldman (Google), Ilya Mironov (Google), Kunal Talwar (Google), and Abhradeep Thakurta (University of California, Santa Cruz and Google)	. 521
Revealing Network Structure, Confidentially: Improved Rates for Node-Private Graphon Estimation Christian Borgs (Microsoft Research), Jennifer Chayes (Microsoft Research), Adam Smith (Boston University), and Ilias Zadik (Massachusetts Institute of Technology)	533

Session 2.4.A

Perfect Lp Sampling in a Data Stream Rajesh Jayaram (Carnegie Mellon University) and David P. Woodruff (Carnegie Mellon University)	544
The Sketching Complexity of Graph and Hypergraph Counting John Kallaugher (University of Texas at Austin), Michael Kapralov (École Polytechnique Fédérale de Lausanne), and Eric Price (University of Texas at Austin)	556

Session 2.4.B

	568
Marthe Bonamy (Université de Bordeaux), Édouard Bonnet (Université de	
Lyon and Université Claude-Bernard), Nicolas Bousquet (CNRS, G-SCOP	
Laboratory, Grenoble-INP), Pierre Charbit (Université Paris Diderot -	
IRIF), and Stéphan Thomassé (Université de Lyon and Université	
Claude-Bernard)	
Limits on All Known (and Some Unknown) Approaches to Matrix Multiplication	580
Josh Alman (Massachusetts Institute of Technology) and Virginia	
Vassilevska Williams (Massachusetts Institute of Technology)	

Session 2.5

Pseudorandom Sets in Grassmann Graph Have Near-Perfect Expansion	592
Khot Subhash (New York University), Dor Minzer (Tel Aviv University),	
and Muli Safra (Tel Aviv University)	

Session 2.6

Knuth Prize Lecture: On the Difficulty of Approximating Boolean Max-CSPs	602
Johan Håstad (Royal Institute of Technology)	

Session 3.1.A

Dispersion for Data-Driven Algorithm Design, Online Learning, and Private Optimization Maria-Florina Balcan (Carnegie Mellon University), Travis Dick (Carnegie Mellon University), and Ellen Vitercik (Carnegie Mellon University)	603
Efficient Density Evaluation for Smooth Kernels Arturs Backurs (Massachusetts Institute of Technology), Moses Charikar (Stanford University), Piotr Indyk (Massachusetts Institute of Technology), and Paris Siminelakis (Stanford University)	615
Efficiently Learning Mixtures of Mallows Models Allen Liu (Massachusetts Institute of Technology) and Ankur Moitra (Massachusetts Institute of Technology)	627
Efficient Statistics, in High Dimensions, from Truncated Samples Constantinos Daskalakis (Massachusetts Institute of Technology), Themis Gouleakis (Massachusetts Institute of Technology), Chistos Tzamos (University of Wisconsin-Madison), and Manolis Zampetakis (Massachusetts Institute of Technology)	639

Session 3.1.B

Planar Graph Perfect Matching Is in NC Nima Anari (Stanford University) and Vijay V. Vazirani (University of California, Irvine)	650
On Derandomizing Local Distributed Algorithms Mohsen Ghaffari (ETH Zurich), David G. Harris (University of Maryland, College Park), and Fabian Kuhn (University of Freiburg)	662
Parallel Graph Connectivity in Log Diameter Rounds	674
A Faster Distributed Single-Source Shortest Paths Algorithm	686

Session 3.2.A

1-Factorizations of Pseudorandom Graphs	. 698
Asaf Ferber (Massachusetts Institute of Technology) and Vishesh Jain	
(Massachusetts Institute of Technology)	

Sublinear Algorithms for Local Graph Centrality Estimation Marco Bressan (Sapienza Università di Roma), Enoch Peserico (Università degli Studi di Padova), and Luca Pretto (Università degli Studi di Padova)	709
Efficient Polynomial-Time Approximation Scheme for the Genus of Dense Graphs Bojan Mohar (Simon Fraser University) and Yifan Jing (Simon Fraser University)	719
Session 3.2.B	
Low-Degree Testing for Quantum States, and a Quantum Entangled Games PCP for QMA Anand Natarajan (Massachusetts Institute of Technology) and Thomas Vidick (California Institute of Technology)	731
Constant Overhead Quantum Fault-Tolerance with Quantum Expander Codes	.743
Spatial Isolation Implies Zero Knowledge Even in a Quantum World Alessandro Chiesa (University of California, Berkeley), Michael Forbes (University of Illinois at Urbana–Champaign), Tom Gur (University of California, Berkeley), and Nicholas Spooner (University of California,	755

Session 3.3.A

Berkeley)

Beating the Integrality Ratio for s-t-Tours in Graphs	766
Constant Factor Approximation Algorithm for Weighted Flow Time on a Single Machine in Pseudo-Polynomial Time Jatin Batra (IIT Delhi), Naveen Garg (IIT Delhi), and Amit Kumar (IIT Delhi)	778
Random Order Contention Resolution Schemes	790
Strong Coresets for k-Median and Subspace Approximation: Goodbye Dimension	302
Epsilon-Coresets for Clustering (with Outliers) in Doubling Metrics	314

Session 3.3.B

Non-Malleable Codes for Small-Depth Circuits Marshall Ball (Columbia University and IDC Herzliya), Dana Dachman-Soled (University of Maryland), Siyao Guo (Northeastern University), Tal Malkin (Columbia University), and Li-Yang Tan (Stanford University)	826
Tighter Bounds on Multi-Party Coin Flipping via Augmented Weak Martingales and Differentially Private Sampling Amos Beimel (Ben-Gurion University), Iftach Haitner (Tel Aviv University), Nikolaos Makriyannis (Tel Aviv University), and Eran Omri (Ariel University)	838
Cryptographic Hashing from Strong One-Way Functions (Or: One-Way Product Functions and Their Applications) Justin Holmgren (Massachusetts Institute of Technology) and Alex Lombardi (Massachusetts Institute of Technology)	850
Laconic Function Evaluation and Applications Willy Quach (Northeastern University), Hoeteck Wee (CNRS and ENS), and Daniel Wichs (Northeastern University)	859
PanORAMa: Oblivious RAM with Logarithmic Overhead Sarvar Patel (Google LLC), Giuseppe Persiano (Google LLC and University of Salerno), Mariana Raykova (Google LLC and Yale University), and Kevin Yeo (Google LLC)	871

Session 3.4.A

fficient Algorithms for Tensor Scaling, Quantum Marginals, and Moment Polytopes
 Solving Directed Laplacian Systems in Nearly-Linear Time through Sparse LU Factorizations
he Diameter of the Fractional Matching Polytope and Its Hardness Implications
coordinate Methods for Accelerating ℓ∞ Regression and Faster Approximate Maximum Flow 922 Aaron Sidford (Stanford University) and Kevin Tian (Stanford

University)

Session 3.4.B

A Near-Optimal Depth-Hierarchy Theorem for Small-Depth Multilinear Circuits Suryajith Chillara (IIT Bombay), Christian Engels (IIT Bombay), Nutan Limaye (IIT Bombay), and Srikanth Srinivasan (IIT Bombay)	934
Pseudorandom Generators for Read-Once Branching Programs, in Any Order Michael A. Forbes (University of Illinois at Urbana-Champaign) and Zander Kelley (University of Illinois at Urbana-Champaign)	946
Indistinguishability by Adaptive Procedures with Advice, and Lower Bounds on Hardness Amplification Proofs	956
Aryeh Grinberg (University of Haifa), Ronen Shaltiel (University of Haifa), and Emanuele Viola (Northeastern University)	
Near Log-Convexity of Measured Heat in (Discrete) Time and Consequences Mert Salam (University of Washington)	967

Session 3.5

Approximating Edit Distance within Constant Factor in Truly Sub-Quadratic Time	979
Diptarka Čhakraborty (Charles University), Debarati Das (Charles	
University), Elazar Goldenberg (Academic College of Tel Aviv-Yaffo),	
Michal Koucky (Charles University), and Michael Saks (Rutgers	
University)	

Author Index