2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI 2018)

Volos, Greece 5-7 November 2018

Pages 1-526

IEEE Catalog Number: ISBN: CFP18091-POD 978-1-5386-7450-5

Copyright © 2018 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number: ISBN (Print-On-Demand): ISBN (Online): ISSN: CFP18091-POD 978-1-5386-7450-5 978-1-5386-7449-9 1082-3409

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2018 IEEE 30th International Conference on Tools with Artificial Intelligence ICTAI 2018

Table of Contents

Message from the ICTAI General Chairs	xxi
Message from the ICTAI Program Chair	xxii
Message from the ICTAI 2018 Special Track on SAT/CSP Co-chairs	xxiii
Message from the Applications of AI in Smart Cities Track Chairs	xxiv
Committees	xxv
ICTAI Subreviewers	

Session 1.1 Deep Learning

 Fine-Grained Hierarchical Classification of Plant Leaf Images Using Fusion of Deep Models Voncarlos M. Araújo (Pontifical Catholic University of Parana (PUCPR)), Alceu S. Britto Jr (Pontifical Catholic University of Parana (PUCPR)), André L. Brun (Pontifical Catholic University of Parana (PUCPR)), Alessandro L. Koerich (École de Technologie Supérieure (ÉTS)), and Luiz E. S. Oliveira (Federal University of Parana (UFPR)) 	1
 Historical Best Q-Networks for Deep Reinforcement Learning Wenwu Yu (Institute of Software Chinese Academy of Sciences(ISCAS)), Rui Wang (Institute of Software Chinese Academy of Sciences(ISCAS)), Ruiying Li (Institute of Software Chinese Academy of Sciences(ISCAS)), Jing Gao (Institute of Software Chinese Academy of Sciences(ISCAS)), and Xiaohui Hu (Institute of Software Chinese Academy of Sciences(ISCAS)), Sciences(ISCAS)) 	6
Deep Cross-View Label Embedding with Correlation and Structure Preserved for Multi-Label Classification	2
 GT-Net: A Deep Learning Network for Gastric Tumor Diagnosis	0
Using State Predictions for Value Regularization in Curiosity Driven Deep Reinforcement Learning	5

Sparse Deep Neural Networks for Embedded Intelligence	30
Jia Bi (University of Southampton) and Steve R. Gunn (University of	
Southampton)	

Session 1.2 Neural Models I

Data Dropout: Optimizing Training Data for Convolutional Neural Networks <i>Tianyang Wang (Austin Peay State University), Jun Huan (Baidu</i> <i>Research), and Bo Li (University of Southern Mississippi)</i>	39
 Improved Spoken Uyghur Segmentation for Neural Machine Translation	47
 Multi-LCNN: A Hybrid Neural Network Based on Integrated Time-Frequency Characteristics for Acoustic Scene Classification Jin Lei (Science and Technology on Parallel and Distributed Laboratory, National University of Defense Technology), Changjian Wang (Science and Technology on Parallel and Distributed Laboratory, National University of Defense Technology), Boqing Zhu (Science and Technology on Parallel and Distributed Laboratory, National University of Defense Technology), Boqing Zhu (Science and Technology on Parallel and Distributed Laboratory, National University of Defense Technology), Roging Zhu (Science and Technology), Qin Lv (Department of Computer Science, University of Colorado Boulder), Zhen Huang (Science and Technology on Parallel and Distributed Laboratory, National University of Defense Technology), and Yuxing Peng (Science and Technology on Parallel and Distributed Laboratory, National University of Defense Technology), National University of Defense Technology), National University of Defense Technology, National University of Defense 	52
Neural Network Specialists for Inverse Spiral Inductor Design Nikolaos Dervenis (National Technical University of Athens), Georgios Alexandridis (National Technical University of Athens), and Andreas Stafylopatis (National Technical University of Athens)	60
Predicting Stances in Twitter Conversations for Detecting Veracity of Rumors: A Neural Approach Lahari Poddar (National University of Singapore), Wynne Hsu (National University of Singapore), Mong Li Lee (National University of Singapore), and Shruti Subramaniyam (Columbia University)	65

Session 1.3 AI Logic and Constraints I

Tracking Branches in Trees - A Propositional Encoding for Solving Partially-Ordered HTN Planning Problems	73
Gregor Behnke (Ulm University), Daniel Höller (Ulm University), and Susanne Biundo (Ulm University)	
Enhanced Unsatisfiable Cores for QBF: Weakening Universal to Existential Quantifiers	. 81

A New Interval Contractor Based on Optimality Conditions for Bound Constrained Global Optimization Laurent Granvilliers (University of Nantes)	90
Declarative Local-Search Neighbourhoods in MiniZinc Gustav Björdal (Uppsala University), Pierre Flener (Uppsala University), Justin Pearson (Uppsala University), Peter J. Stuckey (Monash University), and Guido Tack (Monash University)	. 98
Stratified Constructive Disjunction and Negation in Constraint Programming Arnaud Gotlieb (Simula Research Laboratory), Dusica Marijan (Simula Research Laboratory), and Helge Spieker (Simula Research Laboratory)	106
Assigning and Scheduling Service Visits in a Mixed Urban/Rural Setting	114
Identification of Dynamic Parameters for Gene Networks Behaegel Jonathan (Université Côte d'Azur), Comet Jean-Paul (Université Côte d'Azur), and Pelleau Marie (Université Côte d'Azur)	122
Session 1.4 Learning and Analytics	

Acoustic Diversity Classifier for Automated Marine Big Data Analysis	.30
Data Sampling Approaches with Severely Imbalanced Big Data for Medicare Fraud Detection	37
Building and Interpreting Risk Models from Imbalanced Clinical Data	.43
ALSTM: Adaptive LSTM for Durative Sequential Data	51

A General Framework for Querying Possibilistic RDF Data	158
Amna Abidi (Université de Tunis, ISG, LARODEC, Tunis, Tunisia LIAS,	
ISAE-ENSMA), Mohamed Anis Bach Tobji (Univ. Manouba, ESEN), Allel	
Hadjali (LIAS, ISAE-ENSMA, Poitiers, France), and Boutheina Ben	
Yaghlane (University of Carthage, IHEC)	
Supervised Data Synthesizing and Evolving – A Framework for Real-World Traffic Crash Severity	
Classification	163
Yi He (University of Louisiana at Lafayette), Di Wu (Chongqing	
Institute of Green and Intelligent Technology, Chinese Academy of	
Sciences), Ege Beyazit (University of Louisiana at Lafayette),	
Xiaoduan Sun (University of Louisiana at Lafayette), and Xindong Wu	
(University of Louisiana at Lafayette)	

Session 1.5 Recommendation Methods

SocialFan: Integrating Social Networks Into Recommender Systems	171
RNDM: A Random Walk Method for Music Recommendation by Considering Novelty, Diversity, and Mainstream	177
Mengsha Wang (Tianjin University of Technology), Yingyuan Xiao (Tianjin University of Technology), Wenguang Zheng (Tianjin University of Technology), and Xu Jiao (Tianjin University of Technology)	
Multi-Algorithmic Techniques and a Hybrid Model for Increasing the Efficiency of Recommender Systems 1 Christos Troussas (University of Piraeus), Akrivi Krouska (University of Piraeus), and Maria Virvou (university of Piraeus)	84
A Linked Data Browser with Recommendations	89
Social Recommendation Based on Implicit Friends Discovering Via Meta-Path	.97

Session 1.6 Language Processing

Fast Document Cosine Similarity Self-Join on GPUs Yilin Feng (Nanjing University), Jie Tang (Nanjing University), Meilin Liu (Wright State University), Chongjun Wang (Nanjing University), and Junyuan Xie (Nanjing University)	. 205
Effective Products Categorization with Importance Scores and Morphological Analysis of the Titles Leonidas Akritidis (University of Thessaly), Athanasios Fevgas (University of Thessaly), and Panayiotis Bozanis (University of Thessaly)	213

Multi-Label Learning Via Codewords	21
Mahlagha Sedghi (University of Central Florida), Yinjie Huang (University of Central Florida), Michael Georgiopoulos (University of	
Central Florida), and Georgios Anagnostopoulos (Florida Institute of Technology)	
A Syntax-Guided Neural Model for Natural Language Interfaces to Databases	29
A Brazilian Speech Database	34
 Sequence Generative Adversarial Network for Long Text Summarization	12

Session 1.7 AI Applications I

Feature Fusion with Deep Supervision for Remote-Sensing Image Scene Classification	249
Long-Term Recurrent Merge Network Model for Image Captioning	254
Boosting Few-Shot Image Recognition Via Domain Alignment Prototypical Networks	260
 Sleep Activity Recognition Using Binary Motion Sensors	265

Electricity Theft Detection Using Generative Models	270
Qianru Zhang (Southeast University), Meng Zhang (Southeast	
University), Tinghuan Chen (The Chinese University of Hong Kong),	
Jinan Fan (Southeast University), Zhou Yang (Southeast University),	
and Guoqing Li (Southeast University)	
A Stock-Movement Aware Approach for Discovering Investors' Personalized Preferences in Stock Markets2	275

AO	toek-wovement Aware Approach for Discovering investors Tersonalized Treferences in St
	Jun Chang (Shanghai University of Finance and Economics) and Wenting
	Tu (Shanghai University of Finance and Economics)

Session 1.8 AI Methods

Computing Argument Preferences and Explanations in Abstract Argumentation	281
Efficient Instance Selection Based on Spatial Abstraction	286
 IPC-Net: 3D Point-Cloud Segmentation Using Deep Inter-Point Convolutional Layers	293
Legal Reasoning in Answer Set Programming	\$02
Constrained Optimization with Preferentially Ordered Outcomes	307
Obstacle-Avoiding Euclidean Steiner Trees by n-Star Bundles	\$15

Session 1.9 Learning

Baselines for Reinforcement Learning in Text Games Mikuláš Zelinka (Charles University)	320
Constraint-Based Learning for Sensor Failure Detection and Adaptation Yuan Shi (University of Southern California), T. K. Satish Kumar (University of Southern California), and Craig A. Knoblock (University of Southern California)	328
Empirical Activation Function Effects on Unsupervised Convolutional LSTM Learning Nelly Elsayed (University of Louisiana at Lafayette), Anthony S. Maida (University of Louisiana at Lafayette Louisiana), and Magdy Bayoumi (University of Louisiana at Lafayette)	336
Online Single Homogeneous Source Transfer Learning Based on AdaBoost Chen Qian (Nanjing University), Hengyang Lu (Nanjing University), and Chongjun Wang (Nanjing University)	344

HetEOTL: An Algorithm for Heterogeneous Online Transfer Learning	350
Qian Chen (Nanjing University), Yun-tao Du (Nanjing University), Ming	
Xu (Nanjing University), and Chong-jun Wang (Nanjing University)	
Utterance Censorship of Online Reinforcement Learning Chatbot	358
Yixuan Chai (Donghua University) and Guohua Liu (Donghua University)	

Session 2.1 Classification and Clustering

 Fusion of Classifiers Based on Centrality Measures Ronan Assumpção Silva (Pontifical Catholic University of Parana (PUCPR)), Alceu S. Britto Jr. (Pontifical Catholic University of Parana (PUCPR)), Fabricio Enembreck (Pontifical Catholic University of Parana (PUCPR)), Robert Sabourin (Ecole de Technologie Superieure (ETS)), and Luis S. Oliveira (Federal University of Parana (UFPR)) 	363
Forest Species Recognition Based on Ensembles of Classifiers Jefferson Martins (Federal University of Technology - Parana (UTFPR)), Luiz S. Oliveira (Federal University of Parana (UFPR)), Robert Sabourin (Ecole de Technologie Superieure (ETS)), and Alceu S. Britto Jr. (Pontifical Catholic University of Parana (PUCPR))	371
Corpus-Based Augmented Media Posts with Density-Based Clustering for Community Detection Wathsala Anupama Mohotti (Queensland University of Technology) and Richi Nayak (Queensland University of Technology)	379
Improved Affinity Propagation Clustering for Business Districts Mining	387
Recursive Structure Similarity: A Novel Algorithm for Graph Clustering Yixin Fang (New Jersey Institute of Technology), Rouming Jin (Kent State University), Wei Xiong (Kent State University), Xiaoning Qian (Texas A&M University), Dejing Dou (University of Oregon), and Hai Phan (New Jersey Institute of Technology)	395
Inducing Readable Oblique Decision Trees Antonin Leroux (craft.ai), Matthieu Boussard (craft.ai), and Remi Dés (craft.ai)	401

Session 2.2 Distributed Intelligence Systems

Optimization of Control Agents Shifts in Public Transportation: Tackling Fare Evasion with Machine-Learning	409
Jean-Baptiste Delfau (Datategy), Daphné Pertsekos (Datategy), and Mehdi Chouiten (Datategy)	. 107
A Framework for Plan Library Evolution in BDI Agent Systems	414
Mengwei Xu (University of Bristol), Kim Bauters (University of	
Bristol), Kevin McAreavey (University of Bristol), and Weiru Liu	
(University of Bristol)	

Managing Power Flows in SmartGrids with Physically-Inspired Reactive Agents Gechter Franck (Univ. Bourgogne Franche Comte - UTBM), Lauri Fabrice (Univ. Bourgogne Franche Comte - UTBM), Gussy Anthony (Université de Technologie de Belfort-Montbéliard), and Staine Florian (Université de Technologie de Belfort-Montbéliard)	422
Path Generation with LSTM Recurrent Neural Networks in the Context of the Multi-Agent Patrolling Mehdi Othmani-Guibourg (ONERA, Toulouse, France), Amal El Fallah-Seghrouchni (Sorbonne Université), and Jean-Loup Farges (ONERA, Toulouse, France)	430
Sensus Vox: Sentiment Mapping Through Smartphone Multi-Sensory Crowdsourcing Angelos Fasoulis (University of Piraeus), Maria Virvou (University of Piraeus), George Tsihrintzis (University of Piraeus), Constantinos Patsakis (University of Piraeus), and Efthimios Alepis (University of Piraeus)	438
Adaptive Give-Up Decisions for a Team of Robots Foraging with Task Partitioning Juan M Nogales (Federal University of Uberlandia) and Gina Maira Barbosa de Oliveira (Federal University of Uberlandia)	445

2.3 Scheduling and Planning

SSCS-: A Cellular Automata-Based Scheduler with Stochastic Update Based on the Neighbourhood States. Gina Maira Barbosa Oliveira (Universidade Federal de Uberlândia - FACOM) and Tiago Ismailer Carvalho (Universidade Federal de Uberlândia - FACOM)	452
Monte-Carlo Planning for Team Re-Formation Under Uncertainty: Model and Properties Jonathan Cohen (University of Caen Normandy) and Abdel-Illah Mouaddib (University of Caen Normandy)	458
Plan and Goal Recognition as HTN Planning Daniel Höller (Ulm University), Gregor Behnke (Ulm University), Pascal Bercher (Ulm University), and Susanne Biundo (Ulm University)	466
A Formally Verified Validator for Classical Planning Problems and Solutions Mohammad Abdulaziz (Technical University of Munich) and Peter Lammich (Technical University of Munich)	474
Vehicle Routing and Scheduling for Regular Mobile Healthcare Services Cosmin Pascaru (Alexandru Ioan Cuza University of Iasi) and Paul Diac (Alexandru Ioan Cuza University of Iasi)	480
Determining Representativeness of Training Plans: A Case of Macro-Operators Lukáš Chrpa (Artificial Intelligence Center, Czech Technical University in Prague) and Mauro Vallati (University of Huddersfield)	488

Session 2.4 Evolutionary Methods

Effective Ant Colony Optimization Solution for the Brazilian Family Health Team Scheduling Problem 493 Willian Heitor Martins (Universidade do Vale do Itajaı), Lucia Helena Souza Alves de Santiago (Prefeitura Municipal de Navegantes), Rafael de Santiago (Federal University of Santa Catarina), and Luís Lamb (Federal University Rio Grande do Sul)

Quanti-Qualitative Analysis of a Memetic Algorithm to Optimize Product Line Architecture Design	198
Hybrid CODBA-II Algorithm Coupling a Co-Evolutionary Decomposition-Based Algorithm with Local Search Method to Solve Bi-Level Combinatorial Optimization	506
A Genetic Algorithm for Improving Robustness of Complex Networks	514
New Evolutionary Approaches for SAT Solving	522
Random Forests with Stochastic Induction of Decision Trees	527

Session 2.5 Pattern Recognition and Analysis

Community Evolution Model for Network Flow Based Multiple Object Tracking Jiahui Chen (Beihang University), Hao Sheng (Beihang University), Yang Zhang (Beihang University), Wei Ke (Macao Polytechnic Institute), and Zhang Xiong (Beihang University)	532
Causal Feature Selection for Individual Characteristics Prediction <i>Tao Ding (University of Maryland Baltimore County), Cheng Zhang</i> <i>(Microsoft Research Cambridge), and Maarten Bos (Carnegie Mellon</i> <i>University)</i>	540
Regressing Controversy of Music Artists from Microblogs Mhd Mousa Hamad (Johannes Kepler University), Marcin Skowron (OFAI), and Markus Schedl (Johannes Kepler University)	548
A Rich-Dictionary Markov Predictor for Vehicular Trajectory Forecasting Dimitrios Papakostas (University of Thessaly) and Dimitrios Katsaros (University of Thessaly)	556
An Improved Laplacian Semi-Supervised Regression Vivien Kraus (Lizeo online media group), Seif-Eddine Benkabou (Université Lyon 1), Khalid Benabdeslem (Université Lyon 1), and Frédéric Cherqui (Université Lyon 1, INSA-LYON)	564

Session 2.6 Optimization

Automatic Configuration of Bi-Objective Optimisation Algorithms: Impact of Correlation Between Objectives <i>Aymeric Blot (Université de Lille), Holger H. Hoos (LIACS, Leiden University), Marie-Éléonore Kessaci (Université de Lile), and Laetitia Jourdan (Université de Lille)</i>	571
Unranking Combinations Using Gradient-Based Optimization Victor Parque (Waseda University) and Tomoyuki Miyashita (Waseda University)	579
From Offline to Online Kidney Exchange Optimization Danuta Chisca (Insight Centre for Data Analytics, Dept. of CS, University College Cork), Michele Lombardi (University of Bologna), Michela Milano (University of Bologna), and Barry O'Sullivan (Insight Centre for Data Analytics Dept. of CS, University College Cork)	587
Finding Optimal Solutions to Token Swapping by Conflict-Based Search and Reduction to SAT Pavel Surynek (Czech Technical University in Prague, Faculty of Information Technology)	592
Inferring Stochastic L-Systems Using a Hybrid Greedy Algorithm Jason Bernard (University Of Saskatchewan) and Ian McQuillan (University Of Saskatchewan)	600
Faster Matrix Completion Using Randomized SVD	608

Session 2.7 Behavioral and Social Models

An Improved User Identification Method Across Social Networks Via Tagging Behaviors	516
Interpreting Social Media-Based Substance Use Prediction Models with Knowledge Distillation	523
A Concise Social Network Representation with Flow Hierarchy Using Frequent Interactions	531
Detection of Shilling Attack Based on Bayesian Model and User Embedding	539

 A Framework for Event Log Generation and Knowledge Representation for Process Mining in Healthcare 647 Roberto Gatta (Universitá Cattolica del Sacro Cuore), Mauro Vallati (University of Huddersfield), Jacopo Lenkowicz (Universitá Cattolica del Sacro Cuore), Calogero Casà (Universitá Cattolica del Sacro Cuore), Francesco Cellini (Policlinico Universitario A. Gemelli), Andrea Damiani (Universitá Cattolica del Sacro Cuore), and Vincenzo Valentini (Universitá Cattolica del Sacro Cuore)

Session 2.8 Recommender Systems

In-Network Decision Making Intelligence for Task Allocation in Edge Computing Konstantinos Kolomvatsos (University of Glasgow) and Christos Anagnostopoulos (University of Glasgow)	655
Survey on Intelligent Personalized Mobile Tour Guides and a Use Case Walking Tour App Athanasios Kountouris (Hellenic Open University) and Evangelos Sakkopoulos (Department of Informatics University of Piraeus)	663
Logical Encoding of Argumentation Frameworks with Higher-Order Attacks Cayrol Claudette (IRIT Université de Toulouse) and Lagasquie-Schiex Marie-Christine (IRIT Université de Toulouse)	667
Probabilistic Argumentation Frameworks with MetaProbLog and ConArg Stefano Bistarelli (University of Perugia), Theofrastos Mantadelis (University of Perugia), Francesco Santini (University of Perugia), and Carlo Taticchi (Gran Sasso Science Institute)	675
A Novel Tsetlin Automata Scheme to Forecast Dengue Outbreaks in the Philippines Darshana Abeyrathna Kuruge (University of Agder, Grimstad, Norway), Ole-Christoffer Granmo (University of Agder, Grimstad, Norway), and Morten Goodwin (University of Agder, Grimstad, Norway)	680
Problem Solving at the Edge of Chaos: Entropy, Puzzles and the Sudoku Freezing Transition Marcelo Prates (UFRGS) and Luis Lamb (UFRGS)	686

Session 2.9 AI Logic and Constraints II

Sketched Answer Set Programming Sergey Paramonov (KU Leuven), Christian Bessiere (LIRMM CNRS), Anton Dries (KU Leuven), and Luc De Raedt (KU Leuven)	694
Dualizing Projected Model Counting Sibylle Möhle (Johannes Kepler University Linz) and Armin Biere (Johannes Kepler University Linz)	
Constrainedness in Stable Matching Guillaume Escamocher (Insight Centre for Data Analytics, University College Cork) and Barry O'Sullivan (Insight Centre for Data Analytics, University College Cork)	
Propagation of Idle Times Costs for Fixed Job Scheduling	

Improving Constraint Solving on Parallel Hybrid Systems	
Pedro Roque (University of Evora / LISP, Portugal), Vasco Pedro	
(University of Evora / LISP, Portugal), Daniel Diaz (University	
Paris-1 / CRI, France), and Salvador Abreu (University of Evora /	
LISP, Portugal)	
Sum-of-Products with Default Values: Algorithms and Complexity Results	
Robert Ganian (TU Wien), Eun Jung Kim (LAMSADE/CNRS, Université	
Paris-Dauphin), Friedrich Slivovsky (TU Wien), and Stefan Szeider (TU	
Wien)	
On the Relevance of Optimal Tree Decompositions for Constraint Networks	
Philippe Jégou (Aix Marseille Univ, Université de Toulon, CNRS, LIS),	
Hélène Kanso (Effat University), and Cyril Terrioux (Aix Marseille	
Univ, Université de Toulon, CNRS, LIS)	
Zigzagging Strategies for Temporal Induction	
Guillaume Baud-Berthier (Safe River, Montrouge, France) and Laurent	
Simon (Bordeaux-INP, University of Bordeaux, LaBRI CNRS)	

Session 3.1 Decision and Selection Systems

A Multimodal Human-Machine Interaction Scheme for an Intelligent Robotic Nurse Iosif Papadakis Ktistakis (Wright State University) and Nikolaos Bourbakis (Wright State University)	749
Online Parallel Portfolio Selection with Heterogeneous Island Model <i>Štepan Balcar (Charles University) and Martin Pilat (Charles University)</i>	757
Dynamic Ensemble Selection by K-Nearest Local Oracles with Discrimination Index Marcelo Pereira (Pontifícia Universidade Católica do Paraná), Alceu Britto (Pontifícia Universidade Católica do Paraná), Luiz Oliveira (Universidade Federal do Paraná), and Robert Sabourin (École de Technologie Supérieure)	.765
An Iterative Instance Selection Based Framework for Multiple-Instance Learning Liming Yuan (Tianjin University of Technology), Xianbin Wen (Tianjin University of Technology), Lu Zhao (Tianjin Chengjian University), and Haixia Xu (Tianjin University of Technology)	.772
Information-Oriented Evaluation Metric for Dialogue Response Generation Systems Peiqi Liu (Shenzhen University), Sheng-hua Zhong (Shenzhen University), Zhong Ming (Shenzhen University), and Yan Liu (The Hong Kong Polytechnic University)	.780
Symbolic Music Genre Transfer with CycleGAN Gino Brunner (ETH Zurich), Yuyi Wang (ETH Zurich), Roger Wattenhofer (ETH Zurich), and Sumu Zhao (ETH Zurich)	786

Session 3.2 Miscellaneous

LPMLNModels: A Parallel Solver for LPMLN Wei Wu (The 28th Research Institute of China Electronics Technology Group Corporation), Hongxiang Xu (Southeast University), Shutao Zhang (Southeast University), Jiaqi Duan (Southeast University), Bin Wang (Southeast University), Zhizheng Zhang (Southeast University), Chenglong He (The 28th Research Institute of China Electronics Technology Group Corporation), and Shiqiang Zong (The 28th Research Institute of China Electronics Technology Group Corporation)	794
A New Method for Computing Stable Models in Logic Programming <i>Tarek Khaled (Aix-Marseille University), Belaid Benhamou</i> <i>(Aix-Marseille University), and Pierre Siegel (Aix-Marseille</i> <i>University)</i>	800
A Neighborhood-Based Value Iteration Algorithm for POMDP Problems Feng Liu (Nanjing University) and Zheng Liu (Nanjing University)	808
GAMBAD: A Method for Developing Systems of Systems Gregory Moro Puppi Wanderley (Sorbonne Universités, Université de Technologie de Compiègne, CNRS), Marie-Hélène Abel (Sorbonne Universités, Université de Technologie de Compiègne, CNRS), Emerson Cabrera Paraiso (Pontifícia Universidade Católica do Paraná, PPGIa), and Jean-Paul A. Barthès (Sorbonne Universités, Université de Technologie de Compiègne, CNRS)	813
Dealing with Imbalanceness in Hierarchical Multi-Label Datasets Using Multi-Label Resampling Techniques	818
Weight Adjusted Naive Bayes	825
Detecting and Analyzing Anomalies Across Historical Data Changes: A Data-Driven Approach Alfredo Cuzzocrea (University of Trieste and ICAR-CNR), Fabio Martinelli (IIT-CNR), and Francesco Mercaldo (IIT-CNR)	832

Session 3.3 Smart Cities I

Smart Governance Through Opinion Mining of Public Reactions on Ordinances Manish Puri (Montclair State University), Aparna Varde (Montclair State University), Xu Du (Montclair State University), and Gerard de Melo (Rutgers University)	838
Comparison of Traffic Forecasting Methods in Urban and Suburban Context Julien Salotti (Univ Lyon, INSA de Lyon, LIRIS), Serge Fenet (Univ Lyon, Univ. Lyon 1, LIRIS), Romain Billot (IMT Atlantique, Lab-STICC), Nour-Eddin El Faouzi (Univ Lyon, ENTPE, IFSTTAR), and Christine Solnon (Univ Lyon, INSA de Lyon, LIRIS)	846

Bike Usage Forecasting for Optimal Rebalancing Operations in Bike-Sharing Systems	854
Object Detection with Neural Models, Deep Learning and Common Sense to Aid Smart Mobility	859
Co-Ride: Collaborative Preference-Based Taxi-Sharing and Taxi-Dispatch	864
Semi-Supervised Learning Techniques for Automated Fault Detection and Diagnosis of HVAC Systems	872
Fuzzy Leaky Bucket with Application to Coordinating Smart Appliances in Smart Homes	878

Session 3.4 Combinations of Intelligent Methods I

Session 3.5 Graphs and Network Models

A Graph Resilience Metric Based On Paths: Higher Order Analytics With GPU Georgios Drakopoulos (Ionian University), Xenophon Liapakis (Interamerican SA), Giannis Tzimas (TEI of Western Greece), and Phivos Mylonas (Ionian University)	
Translation-Based Attributed Network Embedding Jingjie Mo (Chinese Academy of Sciences), Neng Gao (Chinese Academy of Sciences), Yujing Zhou (Chinese Academy of Sciences), Yang Pei (Chinese Academy of Sciences), and Jiong Wang (Chinese Academy of Sciences)	
Edge Content Enhanced Network Embedding Hongcui Wang (Tianjin University), Erwei Wang (Tianjin University), Di Jin (Tianjin University), Xiao Wang (Beijing University of Posts and Telecommunications), Jing Wang (The University of Tokyo), and Dongxiao He (Tianjin University)	900
NP-SOM: Network Programmable Self-Organizing Maps Yann Bernard (LORIA), Emeline Buoy (Université de Lorraine), Adrien Fois (LORIA), and Bernard Girau (LORIA)	
Possibilistic Networks: MAP Query and Computational Analysis Salem Benferhat (Université d'Artois), Amélie Levray (University of Edinburgh), and Karim Tabia (Université d'Artois)	916
TreeConnect: A Sparse Alternative to Fully Connected Layers Oliver Richter (ETH Zurich) and Roger Wattenhofer (ETH Zurich)	

Session 3.6 Smart Cities II

A Brief Survey on Smart Community and Smart Transportation Hamid Fekri Azgomi (University of Texas at San Antonio) and Mo Jamshidi (University of Texas at San Antonio)	
A Robust Pickup and Delivery Problem with Uncertain Travel Time Zaher AL Chami (Univ. Bourgogne Franche-Comté FEMTO-ST Institute/CNRS), Bechara Bechara (Univ. Bourgogne Franche-Comté FEMTO-ST Institute/CNRS), Hervé Manier (Univ. Bourgogne Franche-Comté FEMTO-ST Institute/CNRS), and Marie-Ange Manier (Univ. Bourgogne Franche-Comté FEMTO-ST Institute/CNRS)	940
A Particle Swarm Optimization for Selective Pickup and Delivery Problem	947
Efficient Traffic Routing with Progress Guarantees Stefan Blumer (ETH Zurich), Manuel Eichelberger (ETH Zurich), and Roger Wattenhofer (ETH Zurich)	953
Evolving Ensembles of Traffic Lights Controllers	
Contextual Anomaly Detection in Spatio-Temporal Data Using Locally Dense Regions Gaurangi Anand (Queensland University of Technology) and Richi Nayak (Queensland University of Technology)	

Session 3.7 Semantic and Query Models

Web Robot Detection: A Semantic Approach) 68
 Exploiting Global Semantic Similarity Biterms for Short-Text Topic Discovery	¥75
A Novel Automatic Context-Based Similarity Metric for Local Outlier Detection Tasks) 83
An Embedding-Based Approach to Recommending SPARQL Queries) 91
The Taxonomic Cognitive Map Query Language: A General Approach to Analyse Cognitive Maps) 99

Three-Dimensional Joint Geometric-Physiologic Feature for Lip-Reading	1007
Jianguo Wei (TianJin University), Fan Yang (TianJin University), Ju	
Zhang (TianJin University), Ruiguo Yu (TianJin University), Mei Yu	
(TianJin University), and Jianrong Wang (TianJin University)	

Session 3.8 AI Applications II

Performance Comparison of Machine Learning Models Trained on Manual vs ASR Transcriptions for Dialogue Act Annotation	
Usman Malik (Normandie Univ, INSA Rouen, LITIS), Mukesh Barange (Normandie Univ, INSA Rouen, LITIS), Julien Saunier (Normandie Univ, INSA Rouen, LITIS), and Alexandre Pauchet (Normandie Univ, INSA Rouen, LITIS)	
Investigating the Efficiency of Machine Learning Algorithms on MapReduce Clusters with SSDs Leonidas Akritidis (University of Thessaly), Athanasios Fevgas (University of Thessaly), Panagiota Tsompanopoulou (University of Thessaly), and Panayiotis Bozanis (University of Thessaly)	1018
Implementing Fuzzy Cognitive Maps with Neural Networks for Natural Gas Prediction Katarzyna Poczeta (Kielce University of Technology) and Elpiniki I. Papageorgiou (Technological Educational Institute (T.E.I.) of Thessaly)	1026
Power Poses Affect Risk Tolerance and Skin Conductance Levels Davide Saggese (Università della Campania "Luigi Vanvitelli"), Gennaro Cordasco (Università della Campania "Luigi Vanvitelli"), Mauro N. Maldonado (Università di Napoli "Federico II"), Nikolaos Bourbakis (Wright State University), Alessandro Vinciarelli (University of Glasgow), and Anna Esposito (Università della Campania "Luigi Vanvitelli")	1033
An Intelligent Scheme for the Identification of QoS Violations in Virtualized Environments Kostas Kolomvatsos (University of Athens), Maria Koziri (University of Thessaly), and Thanasis Loukopoulos (University of Thessaly)	
Context Enhancement for Linear Contextual Multi-Armed Bandits	1048

Author Index