28th Annual Saudi-Japan Symposium on Technology in Petroleum Refining and Petrochemicals 2018

Dhahran, Saudi Arabia 12 - 13 November 2018

ISBN: 978-1-5108-7743-6

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2018) by King Fahd University of Petroleum & Minerals All rights reserved.

Printed by Curran Associates, Inc. (2019)

For permission requests, please contact King Fahd University of Petroleum & Minerals at the address below.

King Fahd University of Petroleum & Minerals Dhahran 31261 Kingdom of Saudi Arabia

Phone: +966 (13) 860 0000

info@kfupm.edu.sa

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2633 Email: curran@proceedings.com Web: www.proceedings.com

Contents

#	Title	Page
<mark>1</mark>	Keynote: Characteristics of hydrogen carriers and application to fuel cells, Koichi Eguchi, JPI	<mark>4</mark>
2	Hydrogen production through thermo-neutral reforming of liquid fuels using structured catalysts, Shakeel Ahmed, KFUPM/CRP	5
3	Catalytic steam reforming of biomass-derivatives for hydrogen production, Yasushi Sekine, Waseda University, Japan	6
4	Design of scalable and stable catalysts for CO_2 reforming of methane, Oki Muraza, KFUPM/CENT	7
<mark>5</mark>	<mark>Keynote:</mark> Future fuels & petrochemicals: new technologies in the face of new challenges, Jim Johnson, Honeywell UOP, USA	<mark>8</mark>
6	Clean energy generation by artificial photosynthesis based on semiconductor technology Kazuhiro Ohkawa, KAUST	9
7	The effect of lanthanum exchange on USY-zeolites for the alkylation of 2-butene with isobutane, Mohammed Al-Dossary, Saudi Aramco R&DC	14
8	Responding to 2020 IMO SOx regulation, Atsunori Sato, JGC Corporation, Japan	15
9	Effect of zeolite Y modification on reaction performance of heavy crude oil hydrocracking, Lianhui Ding, Saudi Aramco R&DC	25
10	Oil soluble dispersed catalysts for slurry phase hydrocracking of heavy VGO, Tareq Al-Attas, KFUPM-ChE	26
11	Development of <i>Petroleomics</i> from fundamentals to applications, <i>Kazuhiro Inamura, Japan</i> Petroleum Energy Center (JPEC), Japan	27
12	Effect of alumina binder on deactivation behavior of Pt-Beta catalyst for transalkylation of toluene with 1,2,4-trimethylbenzene, Faisal Al-Mulla, Saudi Aramco R&DC	37
13	Driving catalysis innovation in petrochemicals through designing of unneglectable support materials, Muhammad Haider, SABIC Riyadh	38
14	Study the nano-structured zeolites for hydrocarbon reforming: kinetic and reaction pathways, Ali N. Al-Jishi, Saudi Aramco R&DC	39
15	Advance characterization of heterogeneous catalyst of core-shell Pt@SiO2 nanoparticles, Noor Al-Mana, Saudi Aramco R&DC	40
16	Numerical modeling for selected chemical processes,Tarek Jamaleddine, SABIC Riyadh	41
17	Oxidative reforming of n-butane to ethylene, propylene and syngas on acid/base nano-hybrid catalyst, Sachio Asaoka, KFUPM/CRP and JCCP	48
18	Light naphtha upgrading to aromatics using metal modified MFI zeolite catalysts, Yaming Jin, Saudi Aramco R&DC	56
19	Upgrading of unused heavy fuel oil over iron oxide based catalysts under sub and supercritical water conditions, Takuya Yoshikawa, Hokkaido University, Japan	57
20	Zeolite catalyst development for enhancing p-xylene selectivity, Mohammed Al-Bahar, Saudi Aramco R&DC	63
21	MgO-blended polyethylene glycol composites as a shape-stabilized phase change material for solar thermal energy storage, Md. Hasan Zahir, KFUPM/CoRE-RE	64
22	Nuclear Magnetic Resonance (NMR) Spectroscopy at Saudi Aramco's R&D Center: Where Synergy is Opportunity, Qasim Saleem, Saudi Aramco R&DC	69
23	Catalytic conversion of Saudi alpha-olefins to energy-saving value-added polymeric flow aids, Muhammad Atiqullah, KFUPM/CRP	70
24	Novel cycloolefin copolymers synthesized by ansa-dimethylsilylene fluorenyl)(amido) titanium- based catalysts, Takeshi Shiono, Hiroshima University, Japan	84
	Symposium Program	86