Wollongong, Australia 4-7 December 2018

Pages 1-615

IEEE Catalog Number: C ISBN: 9

CFP18TAL-POD 978-1-5386-6523-7

Copyright © 2018 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	С
ISBN (Print-On-Demand):	91
ISBN (Online):	97
ISSN:	23

CFP18TAL-POD 978-1-5386-6523-7 978-1-5386-6522-0 2374-0191

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

Title

Table of Contents

Page range

Full Papers

Arduino as an Educational Tool to Introduce Robotics	1–8
Integrated Telegram and Web-based Forum with Automatic Assessment of Questions and Answers for Collaborative Learning	9–16
Relationships between Collaborative Problem Solving, Learning Performance and Learning Behavior in Science Education	17–24
Application and Evaluation of a Grouped Flipped Classroom Method	25–31
A Top-Down Approach to Teaching Web Development in the Cloud	32-39
SplashKit: A Development Framework for Motivating and Engaging Students in Introductory Programming	40-47
Verifying User Concentration Based on Brainwave Control Applied to Different Game Training Methods	48–53
A Quantitative Approach to Design Special Purpose Systems to Measure Hacking Skills	54–61
Educating and Raising Awareness on Cyber Security Social Engineering: A Literature Review	62–68
MOOC-O-Bot: Using Cognitive Technologies to Extend Knowledge Support in MOOCs	69–76
Computational Thinking and Coding Subject in Primary Schools: Methodological Approach Based on Alternative Cooperative and Individual Learning Cycles	77–83
A Study on The Process and Effect of Using Cooperative Learning Approach into Electronics Lecture	84–90
Framework to Enhance Teaching and Learning in System Analysis and Unified Modelling Language	91–98
Complete Flipping of a Large Advanced Analytical Course: Engaging Students as Partners	99–106
Peer Assisted Study Sessions (PASS) Online: Investigating the impact of an online format across different first year university subjects.	107–113
International Comparison of College-Level Computing Education	114–121
Applied Learning Through Industry Lab In A Course On RF Engineering & EMC	122–127
An Empirical Study on the Impact of Pre-recorded Lectures on Students' Performance in Integral Calculus	128–133
PILAR: A Federation of VISIR Remote Laboratory Systems for Educational Open Activities	134–141
Cognitive Load Optimisation – A New, Practical, Easy-to-Use Teaching Method for Enhancing STEM Educational Outcomes Based on the Science of Learning	142–147
Redesigning a Compulsory Computing Internship Course for Massification	148–154
Evaluating Teaching Effectiveness Using Quantitative Student Feedback	155–160
Mind the Gap: Insights into Student Perceptions During Peer Assessment of Writing	161–168
Enhancing Teaching Methods on Embedded Systems with Project-Based Learning	169–176
Theory And Practice In A Systems Integration Project Life Cycle	177–184

Table of Contents

Title	Page range
A Java Program for Automatic Team Allocation in Project-Based Coursework	185–192
Evaluation of a Virtual Reality Nasal Cavity Education Tool	193–198
Creative Thinking of Engineering Undergraduates through Brainstorming during Mathematical Problem Solving	199–206
Higher Education Practices Accounting for Gender Differences in Technological Development as Part of SDGs Achievement	207–214
Copyright Awareness and Video Assignment: A Case Study on Thai First-Year Engineering Students	215-221
Using Maths Model Method in Solving Pre Algebraic Problems among Year Five Students	222–227
Enhanced Student Learning in Proteomics - An Interactive Tool Support for Teaching Workflows	228–235
Technology-Supported Single Training for One-on-One in Basketball Matches	236–242
Students Discussing Ideas in Online Spaces: Research-Infused Recommendations for Making Computer-Mediated Discussions Productive for Learning	243–250
Evaluation of Automatic Collaborative Learning Process Coding Using Deep Learning Methods	251–258
Awakening the Interest of High School Pupils in Science, Technology, Engineering and Mathematics Studies and Careers through Scientific Projects	259–265
Understanding Common Student Mistakes in the Remote Laboratory NetLab	266–271
The Link between Spatial Skills and Engineering Problem-Solving	272–278
Playful STEAM Learning Using Robots	279–285
Making the Most of Repetitive Mistakes: An Investigation into Heuristics for Selecting and Applying Feedback to Programming Coursework	286–293
Student Collegiality in Interdisciplinary Global Contexts	294–300
Improving outcomes for a Masters Capstone IT Project	301–307
An Inter-Disciplinary and University PBL Curriculum Using Robot Challenge	308–315
The Contribution of Learning, Teaching and Assessment Activities to the Development of 21st Century STEM Competencies	316–321
Integration of Virtual Reality and Augmented Reality: Are They Worth the Effort in Education?	322–327
Computational Thinking Education for Children: Algorithmic Thinking and Debugging	328–334
The Effectiveness of Integrating Geometer's Sketchpad Software in Phase-Based Geometric Learning	335–341
Exploring the Impact of In-Class Writing Exercises in an Engineering Course	342–349
The Potential of Augmented Reality for Computer Science Education	350-356
Improving Feedback and Discussion in MOOC Peer Assessment using Introduced Peers	357–364
Are We Fit to Graduate Creative Professionals?	365–371
Framework of Integrating Algebraic Thinking in Problem-Based Learning via Online Environment for School Students	372-378

ting Algebraic Thinking in Problem-Based Learning via Online Environment for School Students

Table of Contents

Title	Page range
Developing a Language Learning Application OER	379–386
Learning Management Systems in the Workplace: A Literature Review	387–393
Skill-Based Group Allocation of Students for Project-Based Learning Courses Using Genetic Algorithm: Weighted Penalty Model	394–400
Transnational Interactive Blended Learning: A Learning Community of Practice	401–407
Use of a Collaborative Virtual Reality Simulation for Multi-Professional Training in Emergency Management Communications	408–415
Developing Virtual Reality Open Educational Resources in a Sino-Foreign Higher Education Institution: Challenges and Strategie	es 416–422
An Approach for Evaluating IT Employees' Programming Ability Using the Programed Visual Contents Comparison Method	423–430
Skill-Based Group Allocation of Students for Project-Based Learning Courses Using Genetic Algorithm: Weightless Penalty Mode	el 431–437
Teaching Hardware Reverse Engineering: Educational Guidelines and Practical Insights	438–445
Evaluation of Developing Educational Chatbots Based on The Seven Principles for Good Teaching	446–453
Relationship between Teachers' Self-Efficacy and Instructional Strategies Applied among Secondary School Teachers in Implem	nenting STEM Education 454–461
Annotating Animated AR Objects for Co-located Learning	470–477
Pedagogy for the Practising Engineer: A Closed Loop Feedback Control Analogy to Teaching and Learning	478–485
Effectiveness of Physical Robot Versus Robot Simulator in Teaching Introductory Programming	486–493
Design and Implementation of an Augmented Reality Application with an English Learning Lesson	494–499
Using Problem-Based Learning to Enable Application of Foundation Engineering Knowledge in a Real-World Problem	500–506
An Intervention Study on the Professional Adaptability of Students in Navigation Course of Educational Technology	507–512
Transferring Human Tutor's Style to Pedagogical Agent: A Possible Way by Leveraging Variety of Artificial Intelligence Achievem	nents 513–519
Make Your Own Homework: An Alternative Approach to Assignments in a Flipped Calculus Class	520–525
Tutoring Environment for Automata and the Users' Achievement Goal Orientations	526–533
ICT Competency, Network Interaction, Internet Self-efficacy, and Mathematical Achievement: Direct and Mediating Effects	534–539
Investigating Using Behaviors of E-dictionary with Multiple Design: A Perspective from the Integration of Eye-Tracking Technique	e and Stimulated Recall 540–544
The Impact of Crossword Puzzles on Students' Performance: Does Pre-exposure to Puzzles Matter?	545–550
A Gamification Approach For Serious Games	551–558
A Comparison Analysis between Achievement and Requirements for Computing Education	559–566
Objective Assessment of Students' Generic Skills	567–572
Smart Learning in the Pacific: Design of New Pedagogical Tools	573–580

Table of Contents

Title	Page range
An Essential Applied Statistical Analysis Course using RStudio with Project-Based Learning for Data Science	581–588
Exploring Approaches for Teaching and Learning Engineering Asset Management Courses	589–595
Teaching Reform of Engineering Graphics Education in Terms of Engineering Education Professional Certification in Guangzhou, China	596-601
Examining the Impact of Pedagogical Agents on Students' Learning Experience in Virtual Worlds	602–607
Immersive Learning Explored: Subjective and Objective Factors Influencing Learning Outcomes in Immersive Educational Virtual Environments	608–615
Learning Strategies to Optimize the Assimilation of ITC2 Competencies for Business Engineering Programs	616–623

Table of Contents

Page range

Short Papers

Title

Using Virtual Reality to Enhance Learning in a Chinese Architectures Course: A Flipped Classroom Approach	624–629
Basic Construction of Evaluation System for Virtual Learning Environments	630–634
How We Face Globalization of Chinese Education	635–640
Systems Intelligence: A Core Competence for Next- Generation Engineers?	641–644
Designing Immersive Mobile Mixed Reality for Paramedic Education	645–650
Online Learning Platform for Early Prediction of Students' Mathematics Performance	651–656
Towards a Holistic Approach to Improve the Retention Rate of Freshmen in Engineering	662–667
Characterizing Concept Conveying in Interactions between MOOC Students and Assistants	668–673
Using Games for Learning to Improve Students Performance in Higher Education	674–678
TSP: Truthful Grading-Based Strategyproof Peer Selection for MOOCs	679–684
Usability Testing of VLASTA: A Vocabulary Learning and Strategy Teaching App	685–689
Smart Phone Endowed Intelligent Teaching for University General Education Curriculum in China	690–695
Towards a Students Admission Selection Approach Using PROMETHEE II	696–699
Facilitating the Development of Humor in Electrical Engineering Students	700–703
Multidisciplinary Student Performance-Based Teaching Design for Engineering Design via a Commercial Case	704–709
Embedding Mixed Reality in Humanitarian Logistics Gaming	710–715
Academic Expectations for Engineering Freshmen: Gender Differences	716–719
Using Trello to Support Agile and Lean Learning with Scrum and Kanban in Teacher Professional Development	720–724
Interactive Visualizations based E-Learning Aides for Vector Calculus	725–729
Development of a Real-Time Evaluation Support System Using Physiological Index: Case Study of a Simulator-Based Ship Handling Exercise	730–735
A Holistic View on Engineering Education: How to Educate Control Engineers	736–740
On the Significance and Measures of Promoting the Development of Female Researchers in Engineering	741–744
An Innovative Hybrid Model for Developing Cross Domain ICT Talent in Digital Economy	745–750
Gamifying the Element of Forgetting in E-learning Systems	751–754
Analysis of Engineering Students Academic Satisfaction in a Culturally Diverse University	755–760

Table of Contents

Title		Page range
Artificial Intelligence to Enhance Learning Design in UOW Online, a U	nified Approach to Fully Online Learning	761–767
Japanese English Learners' Recognition of English Images		768–773
AHA: ADHD Augmented (Learning Environment)		774–777
Micro-Project Based Curriculum Design and Teaching Practice for Mc	dern Engineering Education in China	778–782
Knowledge Sharing in Digital Learning Communities: A Comparative I	Review of Issues between Education and Industry	783–787
Using Data Mining and Machine Learning Approaches to Observe Ter	chnology-Enhanced Learning	788–793
Unplugged Game Play Motivates the Study of Engineering Ethics		794–797
Supporting Physics Teachers to Deliver the New High School Certification	ate Syllabus: What are the Priorities?	798–801
Improving Student's Engagement through the Use of Learning Module	es, Instanteneous Feedback and Automated Marking	802–806
Readiness of Japanese Elementary School Teachers to Begin Compu	Iter-Programming Education	807–810
Extending a Virtual Reality Nasal Cavity Education Tool with Volume	Rendering	811–814
Augmented Reality Experiences in Informal Education		815–819
Remote Programming Environments: The Robotic Laboratory Case		820-824
From an International Classroom to a Distributed Work Environment:	Student Perspectives on Global Software Engineering	825–828
Praxis-Oriented Teaching of Project Management Skills for STEM Stu	dents in Higher Education	829–834
Preparing STEM Students for Leading Positions through Supervising	Younger Students	835–839
Active Learning to Develop Key Research Skills in Master's Level Cor	nputer Science Coursework	840–845
Utilising a Virtual Learning Assistant as a Measurement and Intervent	on Tool for Self Regulation in Learning	846–849
Smart Grid Education: A Review of Global Course Offerings and the L	JNSW Sydney Approach	850-854
The Effectiveness of a Mentor-Mentee Program on Malaysian School	Students' Interest in STEM	855–860
Blended Learning for the Indo-Pacific		861–865
Exploration and Practice on Establishing a Quality Management Secu	rity System for Undergraduate Capstone Design	866–870
'Learning 4.0': A Conceptual Discussion		871–876
Adopting Good-Learners' Paths in an Intelligent Tutoring System		877–882
Development and Use of a Video On Demand e-Learning System with	Logic Circuit Exercises for Teaching Intellectual Property Law	883–886
The Use of Multiple-Choice Questions in 3rd-Year Electronic Enginee	ring Assessment: A Case Study	887–892
Why Don't You Evacuate Speedily? Augmented Reality-Based Evacu	ee Visualisation in ICT-based Evacuation Drill	893–899

Table of Contents

Page range

Title

A Novel Augmented Reality Guidance System for Future Informatization Experimental Teaching 900-905 Active Interdisciplinary Learning in a Design Thinking Course: Going to Class for a Reason 906-911 An Experimental Research of Augmented Reality Technology From the Perspective of Mobile Learning 912-915 A Blended Learning Approach to Experiential STEM Education for Young Learners 916-920 A Preliminary Study of the Implementation of Concept Maps for Teaching and Learning Strategies in a Power Engineering Course 921-926 Teaching Mathematics with Music: A Pilot Study 927-931 Empowering Weak Engineering Students through My UiTM Engineer Program and Understanding the Characteristics of Weak Students 932-937 Improvement of Capstone Project and Project-Based Learning Method Based on CDIO Mode 938-943 The Beneficial Effects of an Autonomously Operated Engineering Education Outreach Program: A Case Study of the Servant Leadership Program 944-949 Context and Input Evaluations of Physical Fitness Training Programs in Maritime Schools 950-954 The Impact of Final Term Exam Exemption Policy: Case Study at MAAP 955-959 Teaching Key Machine Learning Principles Using Anti-Learning Datasets 960-964 Can Novice Programmers Grasp User-defined Functions? 965-970 Quality Assurance of a Hybrid Online Course through Iterative Process Control 971-976 Engineering Ethics Education: A Meta-Analysis 977–982 Inferring the Climate in Classrooms from Audio and Video Recordings: A Machine Learning Approach 983-988 989–994 Hybrid Fuzzy-Statistical System for Learning Analytics Assessment Map for Multidisciplinary Abilities for IoT System Development Education 995-1000 Evaluating Alternative Input Techniques for Building and Construction VR Training 1001-1004 Kids Making AI : Integrating Machine Learning, Gamification, and Social Context in STEM Education 1005-1010 Teaching Students about Machine Learning through a Gamified Approach 1011-1015 Hack Biodesign: An Integrative STEAM Education in Biology, Engineering and Design 1016-1021 A Proposal for Integrating Gamification into Task-Oriented Portfolio Assessment 1022-1027 A Web-Based MOOC Authoring and Learning System for Computational Science Education 1028-1032 International Experiences and the Implications for the Success of Engineering Programs 1033-1038 Developing Higher Order Thinking Skill with the 120-Minute Instructional Station Rotation (MRSP120) Approach: Students' Perceptions 1039-1043 An Overview of Computing Pedagogy Using the Flipped Classroom Model in Malaysian Education 1044–1048

Table of Contents

Title	Page range
Design and Evaluate SDR-based Labs for Learning Principles of Communications	1049–1052
Design and Practice of Exploratory Virtual Experiment in Physics Discipline	1053–1057
An Evaluation of Nursing Student Motivation to Learn through Holographic Mixed Reality Simulation	1058–1063
Harnessing OERs in Hong Kong Technical and Vocational Education and Training (TVET)	1064–1068
Improving Student Skills on Parallel Programming via Code Evaluation and Feedback Debugging	1069–1073
Using Augmented Reality and Mobile Technologies to Train Automotive Technicians	1074–1078
Towards Smart Educational Recommendations with Reinforcement Learning in Classroom	1079–1084
Surviving in the Gig Economy: Change of STEM Students' Perceptions on the Generic Skills for the Workplace	1085–1090
Open-Space Teaching and Learning in Tertiary Education: A Case Study	1091-1095
Engineering Students at Day Zero: Selection and Concerns by Gender	1096–1100
Preparing Australian High School Learners with 21st Century Skills	1101–1106
Seeking the Treasures of Theoretical Computer Science Education: Towards Educational Virtual Reality for the Visualization of Finite State Machines	s 1107–1112
EntreCompOnto: An Ontology for Semantic Representation of Entrepreneurship Competencies	1113–1118

Table of Contents

Page range

Work-in-Progress Papers

Title

Balancing Accuracy and Transparency in Early Alert Identification of Students at Risk	1125–1128
Concept-Focused In-Class Demonstrations for Teaching Embedded System Design in Large Classes	1133–1137
Topic Analysis of Syllabus for Faculty of Engineering in the Japanese National University	1138–1141
Implementation Guidelines for an Automated Grading Tool to Assess Short Answer Questions on Digital Circuit Design Course	1142-1145
Utilizing Natural Language Processing (NLP) to Evaluate Engagement in Project-Based Learning	1146–1149
Virtual Lab Using Markerless Augmented Reality	1150–1153
Developing Wireless Networking Labs for MOOC Learners on an Online Programming Platform	1154–1157
Supporting Feedback Phases of Self-Regulated Learning in University Settings through Canvas-Based Discussions	1158–1161
Telecommunications Engineering at Macquarie University: Modernisation and Vision	1166–1168
Calibration-Free Eye-Tracking System in Education for Students with Severe Physical and Intellectual Disabilities	1169–1171
Evaluation of Students' Dependency on Out-Of-Class Learning: A Flipped Classroom Approach	1172–1175
National Competency Standards (NCS) Learning Module Application Status in Vocational High Schools in Korea	1176–1178
Categorising Student Responses for Feedback Based on Multiple Choice and Text Responses	1179–1182
Systems Thinking Course for Postgradudate Systems Engineering	1183–1184
Urban Farming in Myanmar: An Experiential Learning Project for Engineering and Science Students from Hong Kong and Myanmar	1185–1188
Improving a Software/Hardware Integrated Computer Networking Laboratory Course	1189–1192
Adaptive Learning and Analytics in Engineering Education	1193–1196
Improving Student Technical Skills Learning Experience: Designing Engineering Training with The First Principles of Instruction	1197-1200
The Role of Learning Analytics in Performance Measurement in a Higher Education Institution	1201-1203
Training Spatial Ability through Virtual Reality	1204–1205
Effects of Gender and Age on Learning Spatial Concepts from a Virtual Reality Game	1206-1207

Title

Table of Contents

Page range

Pre-Conference Workshops

Pre-Conference Workshop - An Open and Improved VISIR System Through PILAR Federation for Electrical/Electronics Remote Experiments	1208–1210
Pre-Conference Workshop - Chatbot Tutors for Blended Learning: Why Bother? And Where to Start?	1211-1212
Pre-Conference Workshop - Connecting Data with Student Support: A Hands-On Tutorial	1213-1214
Pre-Conference Workshop - What Educators and Engineers Need to Know about Patents	1215-1216
Pre-Conference Workshop - Creating XR Experiences for the Classroom	1217-1218

Title

Table of Contents

Page range

Special Sessions

Special Session - Enhancing Class Interactivity: Lessons on Small Teaching from the Learning Sciences	1219–1220
Special Session - Practice-Based Simulation to Develop Students into Engineering Cadets	1221-1222
Special Session - Scaling Automated Scoring: Addressing Practical and Conceptual Challenges	1223–1224
Special Session - Designing Virtual Learning Experiences: Iterating Immersive Environments	1225–1227
Special Session - Online Laboratories in Engineering Education: Innovation, Disruption, and Future Potential	1228–1232

Title

Table of Contents

Page range

Panel Sessions

Panel Session - Providing Automated and Individually Tailored Assessment Feedback	1233–1234
Panel Session - Women in Engineering Networking Panel	1235-1236
Panel Session - Scaling Up Learning Analytics Research Innovations: Challenges and Approaches	1237–1238
Panel Session - Learning Technology Standards	1239-1241