Asphalt Mixtures and Materials 2018

Transportation Research Record: Journal of the Transportation Research Board

Volume 2672, Issue 28

ISBN: 978-1-5108-7832-7

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Published by Sage Publications USA

Copyright© (2018) by Transportation Research Board of the National Academies All rights reserved.

ISBN (Print) 978-1-5108-7832-7 ISBN 2018 Printed Set (All Issues) 978-1-5108-7735-1

Printed by Curran Associates, Inc. (2019)

For permission requests, please contact sagepub.com/journals-permissions

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2633 Email: curran@proceedings.com Web: www.proceedings.com

Contents

Asphalt Mixtures and Materials

Articles

Performance Assessment of Interlayers with Different Tack Coats by Considering Loading Types and Failure Modes Soroosh Amelian and Yong-Rak Kim	I
Conditioning and Testing Protocol Combinations to Detect Asphalt Mixture Damage Rabeea W. Bazuhair, Carl V. Pittman, Isaac L. Howard, Walter S. Jordan III, James Michael Hemsley Jr, and Gaylon L. Baumgardner	10
Development and Validation of a Model to Predict Interface Bonding Between Pavement Layers Ramendra Das, Louay N. Mohammad, Mostafa Elseifi, Wei Cao, and Samuel B. Cooper, Jr.	22
Effects of Regular and Nano Sized Hydrated Lime Fillers on Fatigue and Bond Strength Behavior of Asphalt Mastic Aditya Kumar Das and Dharamveer Singh	31
Effect of Synthetic Fiber State on Mechanical Performance of Fiber Reinforced Asphalt Concrete Hossein Noorvand, Ramadan Salim, Jose Medina, Jeffrey Stempihar, and B. Shane Underwood	42
Utilizing Network and Project-Level Data to Evaluate Impact of Reclaimed Asphalt Pavement and Recycled Asphalt Shingles on Laboratory and Field Performance in Texas Berenice Salaices, David Teutli, Imad Abdallah, Anjan Kumar Siddagangaiah, and Soheil Nazarian	52
Laboratory Evaluation of Mixture Type on Highly Modified Asphalt Mixtures in Virginia Benjamin F. Bowers	59
Laboratory Observation and Evaluation of Asphalt Blends of Reclaimed Asphalt Pavement Binder with Virgin Binder using SEM/EDS Yanxu Jiang, Xingyu Gu, Zhou Zhou, Fujian Ni, and Qiao Dong	69
Effect of Partial Blending on High Content Reclaimed Asphalt Pavement (RAP) Mix Design and Mixture Properties Shuai Yu, Shihui Shen, Xuli Zhou, and Xinghai Li	79
Laboratory Performance of Asphalt Mixtures Containing Re-Refined Engine Oil Bottoms Modified Asphalt Binders Taesun You, Yucheng Shi, Louay N. Mohammad, and Samuel B. Cooper, III	88
Wearing Course Mixtures Prepared with High Reclaimed Asphalt Pavement Content Modified by Rejuvenators Stephan Büchler, Augusto Cannone Falchetto, Axel Walther, Chiara Riccardi, Di Wang, and Michael P. Wistuba	96
A Mechanical Approach to Quantify Blending of Aged Binder from Recycled Materials in New Hot Mix Asphalt Mixtures Milad Zokaei Ashtiani, Walaa S. Mogawer, and Alexander J. Austerman	107
Effect of Binder Modification and Recycled Asphalt Pavement on the Performance of Permeable Friction Course Mark J. Brum, Walaa S. Mogawer, Kevin D. Stuart, and Alexander J. Austerman	119

Investigating the Performances of Plant-Produced High-Reclaimed Asphalt Pavement Content Warm Mix Asphalts Walaa S. Mogawer, Kevin Stuart, Alexander J. Austerman, and Ahmed A. Soliman	130
Impact of Gyration Reduction and Design Specification Changes on Volumetric Properties of Virginia Dense-Graded Asphalt Mixtures Stacey D. Diefenderfer, Benjamin F. Bowers, and Kevin K. McGhee	143
Influence of Recycled Asphalt Pavement on Interfacial Energy and Bond Strength of Asphalt Binder for Different Types of Aggregates Ayyanna Habal and Dharamveer Singh	154
Effect of Mixing Time and Temperature on the Homogeneity of Asphalt Mixtures Containing Reclaimed Asphalt Pavement Material Jiantao Wu, Quan Liu, Yu Wang, Jun Chen, Dawei Wang, Linlin Xie, and Cadnel Ago	167
Performance of Virginia's Early Foamed Warm Mix Asphalt Mixtures Stacey D. Diefenderfer	178
Chemo-Rheological Study of Hardening of Epoxy Modified Bituminous Binders with the Finite Element Method P. Apostolidis, X. Liu, C. Kasbergen, M.F.C. van de Ven, G. Pipintakos, and A. Scarpas	190
Comparison of the Relative Long-Term Field Performance among Various Warm Mix Asphalt (WMA) Pavements Weiguang Zhang, Shihui Shen, and Shenghua Wu	200
Evaluation of Marshall Stability Design Principles: Applied to Cold In-Place Recycling Ben C. Cox and Isaac L. Howard	211
Comparing Pressure Aging Vessel Time to Field Aging of Binder as a Function of Pavement Depth and Time Braden T. Smith, Isaac L. Howard, Walter S. Jordan III, Codrin Daranga, and Gaylon L. Baumgardner	223
Modeling Shear Viscosity of Asphalt through Nonequilibrium Molecular Dynamics Simulation Yongjie Ding, Baoshan Huang, and Xiang Shu	235
Analysis of Asphalt Oxidation by Means of Accelerated Testing and Environmental Conditions Rafael E. Villegas-Villegas, Alejandra Baldi-Sevilla, José Pablo Aguiar-Moya, and Luis Loria-Salazar	244
Low-Temperature Vacuum Drying Procedure for Rapid Asphalt Emulsion Residue Recovery Haritha Malladi, Meron Asnake, Andrew LaCroix, and Cassie Castorena	256
Low-Temperature Emulsion Performance-Graded Specification for Chip Seals Cassie Castorena, Mohammad Ilias, Javon Adams, and Y. Richard Kim	266
Impact of Recycled Materials and Recycling Agents on Asphalt Binder Oxidative Aging Predictions Sara Pournoman, Elie Y. Hajj, Nathan Morian, and Amy Epps Martin	277
Study of Asphalt Binder Fatigue with a New Dynamic Shear Rheometer Geometry Panos Apostolidis, Cor Kasbergen, Amit Bhasin, Athanassios Scarpas, and Sandra Erkens	290
Effects of Light-Activated Self-Healing Polymers on the Rheological Behaviors of Asphalt Binder Containing Recycled Asphalt Shingles Sharareh Shirzad, Marwa M. Hassan, Max A. Aguirre, Samuel Cooper, Jr., and Ioan I. Negulescu	301
Developing Simple Binder Indices for Cracking Resistance of Asphalt Binders at Intermediate and Low Temperatures Raquel Moraes and Hussain Bahia	311

Nonrecoverable Behavior of Polymer Modified and Reclaimed Asphalt Pavement Modified Binder under Different Multiple Stress Creep Recovery Tests Zhou Zhou, Xingyu Gu, Jiwang Jiang, Fujian Ni, and Yanxu Jiang	324
Rheological Behavior and Its Chemical Interpretation of Crumb Rubber Modified Asphalt Containing Warm-Mix Additives Haopeng Wang, Xueyan Liu, Panos Apostolidis, and Tom Scarpas	337
Evaluation of Chemical and Rheological Aging Indices to Track Oxidative Aging of Asphalt Mixtures Farhad Yousefi Rad, Michael D. Elwardany, Cassie Castorena, and Y. Richard Kim	349
Selecting a Laboratory Loose Mix Aging Protocol for the NCAT Top-Down Cracking Experiment Chen Chen, Fan Yin, Pamela Turner, Randy C. West, and Nam Tran	359
Sine versus Haversine Displacement Waveform Comparison for Hot Mix Asphalt Four-Point Bending Fatigue Testing Angel Mateos, Rongzong Wu, Erik Denneman, and John Harvey	372
Impact of Specimen Configuration and Characteristics on Illinois Flexibility Index Jose Rivera-Perez, Hasan Ozer, and Imad L. Al-Qadi	383
Indirect Tensile Test (IDT) to Determine Asphalt Mixture Performance Indicators during Quality Control Testing in New Jersey Thomas Bennert, Edwin Haas, and Edward Wass	394
Comparison of Different Micromechanical Models for Predicting the Effective Properties of Open Graded Mixes Hong Zhang, Kumar Anupam, Athanasios Scarpas, and Cor Kasbergen	404
Comparison of Asphalt Mixtures Crack Resistance at Intermediate Temperatures using Advanced Test Methods and Theories Wei Cao, Louay N. Mohammad, Peyman Barghabany, Samuel B. Cooper, III, and Saman Salari	416
Influence of Production Considerations on Balanced Mixture Designs Alexander J. Austerman, Walaa S. Mogawer, and Kevin D. Stuart	426
Optimization of the Laboratory Fabrication of Small Specimens for Asphalt Mixture Performance Testing Sonja Pape, Kangjin Lee, Cassie Castorena, and Y. Richard Kim	438
Effect of Loading Waveform Pattern and Rest Period on Fatigue Life of Asphalt Concrete Using Viscoelastic Continuum Damage Model Waleed Abdelaziz Zeiada, Padmini P. Gudipudi, B. Shane Underwood, and Mena I. Souliman	451
Practical Method to Determine the Effect of Air Voids on the Dynamic Modulus of Asphalt Mixture Xinjun Li and Jack Youtcheff	462
Effect of Mix Design Variables on Thermal Cracking Performance Parameters of Asphalt Mixtures Mirkat Oshone, Debaroti Ghosh, Eshan V. Dave, Jo Sias Daniel, Joseph M. Voels, and Shongtao Dai	471
A Straightforward Procedure to Characterize Nonlinear Viscoelastic Response of Asphalt Concrete at High Temperatures Mohammad Bazzaz, Masoud K. Darabi, Dallas N. Little, and Navneet Garg	481
Improving the Reliability of Damage Characteristic Curves in the Simplified Viscoelastic Continuum Damage Model Kangjin Lee, Cassie Castorena, and Y. Richard Kim	493
Evaluation of Viscoelastic and Fracture Properties of Asphalt Mixtures with Long-Term Laboratory Conditioning Reyhaneh Rahbar-Rastegar, Jo Sias Daniel, and Eshan V. Dave	503