2018 IEEE 36th International Conference on Computer Design (ICCD 2018)

Orlando, Florida, USA 7-10 October 2018

IEEE Catalog Number:

CFP18ICD-POD **ISBN**: 978-1-5386-8478-8

Copyright © 2018 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP18ICD-POD

 ISBN (Print-On-Demand):
 978-1-5386-8478-8

 ISBN (Online):
 978-1-5386-8477-1

ISSN: 1063-6404

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2018 IEEE 36th International Conference on Computer Design ICCD 2018

Table of Contents

Welcome Message from the General Chair xvi Organizing Committee xvii
Welcome Message from the Program Chair xviii
Program Committee xix
Keynotes
Special Panels xxvi
Tutorials xxxiii
Session 1: Best Papers Session
Composable Template Attacks Using Templates for Individual Architectural Components
Thermal-Aware 3D Symmetrical Buffered Clock Tree Synthesis
Low-Overhead Microarchitectural Patching for Multicore Memory Subsystems
Power Grab in Aggressively Provisioned Data Centers: What is the Risk and What Can Be Done About It
Xiaofeng Hou (Shanghai Jiao Tong University), Luoyao Hao (Shanghai Jiao Tong University), Chao Li (Shanghai Jiao Tong University), Quan Chen (Shanghai Jiao Tong University), Wenli Zheng (Shanghai Jiao Tong University), and Minyi Guo (Shanghai Jiao Tong University)
Session 2A: SSD
Pensieve: a Machine Learning Assisted SSD Layer for Extending the Lifetime

Selective Compression Scheme for Read Performance Improvement on Flash Devices	. 43
OSPADA: One-Shot Programming Aware Data Allocation Policy to Improve 3D NAND Flash Read Performance Fei Wu (Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China), Zuo Lu (Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China), You Zhou (Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China), Xubin He (Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA), Zhihu Tan (School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China), and Changsheng Xie (School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China) Optical Science Science and Technology, Wuhan, China)	
Cap: Exploiting Data Correlations to Improve the Performance and Endurance of SSD RAID	. 59
Session 2B: Side Channels	
A Timing Side-Channel Attack on a Mobile GPU Elmira Karimi (Northeastern University), Zhen Hang Jiang (Northeastern University), Yunsi Fei (Northeastern University), and David Kaeli (Northeastern University)	67
Analysis of Row Hammer Attack on STTRAM	. 75
Machine Learning on the Thermal Side-Channel: Analysis of Accelerator-Rich Architectures	. 83

Session 3A: Security and Capability

CheriRTOS: A Capability Model for Embedded Devices Hongyan Xia (University of Cambridge, UK), Jonathan Woodruff (University of Cambridge, UK), Hadrien Barral (École normale supérieure, France), Lawrence Esswood (University of Cambridge, UK), Alexandre Joannou (University of Cambridge, UK), Robert Kovacsics (University of Cambridge, UK), David Chisnall (University of Cambridge, UK), Michael Roe (University of Cambridge, UK), Brooks Davis (SRI International, US), Edward Napierala (University of Cambridge), John Baldwin (SRI International, US), Khilan Gudka (University of Cambridge, UK), Peter G. Neumann (SRI International, US), Alexander Richardson (University of Cambridge), Simon W. Moore (University of Cambridge, UK), and Robert N. M. Watson (University of Cambridge, UK)	92
ReadPRO: Read Prioritization Scheduling in ORAM for Efficient Obfuscation in Main Memories1 Joydeep Rakshit (University of Pittsburgh) and Kartik Mohanram (University)	100
SGXlinger: A New Side-Channel Attack Vector Based on Interrupt Latency Against Enclave	
Execution	108
Breaking the Oblivious-RAM Bandwidth Wall	115
Session 3B: Microarchitecture	
Rearranging Random Issue Queue with High IPC and Short Delay Shinji Sakai (Nagoya University), Taishi Suenaga (Nagoya University), Ryota Shioya (The University of Tokyo), and Hideki Ando (Nagoya University)	123
Array Tracking Prefetcher for Indirect Accesses	132
Dynamically Disabling Way-prediction to Reduce Instruction Replay	140
Analysis and Characterization of Ultra Low Power Branch Predictors	144
OldSpot: A Pre-RTL Model for Fine-Grained Aging and Lifetime Optimization	148

SPF: Selective Pipeline Flush	152
Session 4A: Logic and Circuit Design 1	
Power-Efficient ReRAM-Aware CNN Model Generation	156
R-Accelerator: A Reconfigurable Accelerator with RRAM Based Logic Contraction and Resource Optimization for Application Specific Computing	163
3D Crosspoint Memory as a Parallel Architecture for Computing Network Reachability	171
Dynamic Computing in Memory (DCIM) in Resistive Crossbar Arrays	179
Low Area-Delay Complexity Digit-Level Parallel-In Serial-Out Multiplier Over GF(2m) Based on Overlap-Free Karatsuba Algorithm	187
Session 4B: Design Automation	
Software and Hardware Techniques for Reducing the Impact of Quantization Errors in Memristor Crossbar Arrays Baogang Zhang (University of Central Florida) and Rickard Ewetz (University of Central Florida)	195
Trading Off Temperature Guardbands via Adaptive Approximations Behzad Boroujerdian (university of Texas at Austin), Hussam Amrouch (Karlsruhe Institute of Technology), Jörg Henkel (Karlsruhe Institute of Technology), and Andreas Gerstlauer (Karlsruhe Institute of Technology)	202
Lattice-Traversing Design Space Exploration for High Level Synthesis Lorenzo Ferretti (Università della Svizzera italiana, Switzerland), Giovanni Ansaloni (Università della Svizzera italiana, Switzerland), and Laura Pozzi (Università della Svizzera italiana, Switzerland)	210

Session 5A: Novel Architectures

Systems	218
Jinhang Choi (Pennsylvania State University), Jack Sampson (Pennsylvania State University), and Vijaykrishnan Narayanan (Pennsylvania State University)	210
Puppet: Energy Efficient Task Mapping For Storage-Less and Converter-Less Solar-Powered Non-Volatile Sensor Nodes Yue Xu (Chongqing University, China), Hyung Gyu Lee (Daegu University, Republic of Korea), Xianzhang Chen (Chongqing University, China), Bo Peng (Southwest University of Science and Technology, China), Duo Liu (Chongqing University, China), and Liang Liang (Chongqing university, China)	226
SYNCVIBE: Fast and Secure Device Pairing through Physical Vibration on Commodity	
Smartphones Kyuin Lee (University of Wisconsin-Madison, USA), Vijay Raghunathan (Purdue University, USA), Anand Raghunathan (Purdue University, USA), and Younghyun Kim (University of Wisconsin-Madison, USA)	234
FPGA Virtualization in Cloud-Based Infrastructures Over Virtio	242
Forca: Fast and Atomic Remote Direct Access to Persistent Memory	246
Session 5B: Memory 1	
CART: Cache Access Reordering Tree for Efficient Cache and Memory Accesses in GPUs Yongbin Gu (Oregon State University) and Lizhong Chen (Oregon State University)	250
ArchSampler: Architecture-Aware Memory Sampling Library for In-Memory Applications Jian Zhou (University of Central Florida) and Jun Wang (University of Central Florida)	258
PIM-TGAN: A Processing-in-Memory Accelerator for Ternary Generative Adversarial Networks Adnan Siraj Rakin (University of Central Florida), Shaahin Angizi (University of Central Flroida), Zhezhi He (University of Central Florida), and Deliang Fan (University of Central Florida)	266
Path Prefetching: Accelerating Index Searches for In-Memory Databases Shuo Li (National University of Defense Technology, China), Zhiguang Chen (Sun Yat-sen University, China), Nong Xiao (Sun Yat-sen University, China), and Guangyu Sun (Peking University, China)	274

Reducing Inter-Application Interferences in Integrated CPU-GPU Heterogeneous Architecture 278 Hao Wen (Virginia Commonwealth University) and Wei Zhang (Virginia Commonwealth University)
Session 6A: Memory 2
Solar-DRAM: Reducing DRAM Access Latency by Exploiting the Variation in Local Bitlines
Scalable and Efficient Virtual Memory Sharing in Heterogeneous SoCs with TLB Prefetching and MMU-Aware DMA Engine
DR DRAM: Accelerating Memory-Read-Intensive Applications
Puzzle Memory: Multifractional Partitioned Heterogeneous Memory Scheme
Session 6B: Logic and Circuit Design 2
Synchronization of Ring-Based Resonant Standing Wave Oscillators for 3D Clocking Applications
Generalized Tree Architecture for Efficient Successive-Cancellation Polar Decoding
Parameterized Posit Arithmetic Hardware Generator

BGIM: Bit-Grained Instant-on Memory Cell for Sleep Power Critical Mobile Applications	42
Autonomous Temperature Management through Selective Control of Exact-Approximate Tiles 34 Siyuan Xu (The University of Texas at Dallas, TX, USA) and Benjamin Carrion Schafer (The University of Texas at Dallas, TX, USA)	46
Session 7A: Accelerators and GPUs	
Automatic Mapping of the Sum-Product Network Inference Problem to FPGA-Based Accelerators 3: Lukas Sommer (TU Darmstadt, Germany), Julian Oppermann (TU Darmstadt, Germany), Alejandro Molina (TU Darmstadt, Germany), Carsten Binnig (TU Darmstadt, Germany), Kristian Kersting (TU Darmstadt, Germany), and Andreas Koch (TU Darmstadt, Germany)	50
BLPP: Improving the Performance of GPGPUs with Heterogeneous Memory through Bandwidth- and Latency-Aware Page Placement	58
General IDS Acceleration for High-Speed Networks	66
Scalable Multi-Queue Data Transfer Scheme for FPGA-Based Multi-Accelerators	74
Session 7B: Potpouri 1	
Characterizing 3D Charge Trap NAND Flash: Observations, Analyses and Applications	81
A Plain-Text Incremental Compression (PIC) Technique with Fast Lookup Ability	89
Towards Efficient Microarchitecture Design of Simultaneous Localization and Mapping in Augmented Reality Era	97

Training Neural Networks with Low Precision Dynamic Fixed-Point	405
Decentralized Collaborative Power Management through Multi-Device Knowledge Sharing	409
Session 8A: NVM	
Breeze: User-Level Access to Non-Volatile Main Memories for Legacy Software	413
R-Cache: A Highly Set-Associative In-Package Cache Using Memristive Arrays	423
A Highly Non-Volatile Memory Scalable and Efficient File System Fan Yang (SKLSDE Lab, Beihang University, China; Beijing Advanced Innovation Center for Big Data and Brain Computing, Beijing, China), Junbin Kangy (Beijing Advanced Innovation Center for Big Data and Brain Computing), Shuai Ma (Beijing Advanced Innovation Center for Big Data and Brain Computing), and Jinpeng Huai (Beijing Advanced Innovation Center for Big Data and Brain Computing)	431
NVCool: When Non-Volatile Caches Meet Cold Boot Attacks Xiang Pan (The Ohio State University), Anys Bacha (University of Michigan), Spencer Rudolph (The Ohio State University), Li Zhou (The Ohio State University), Yinqian Zhang (The Ohio State University), and Radu Teodorescu (The Ohio State University)	439
Session 8B: Test and Verification	
Guiding RTL Test Generation Using Relevant Potential Invariants	449
Back-End Layout Reflection for Test Chip Design	456
How Multi-Threshold Designs Can Protect Analog IPs Abdullah Ash- Saki (Pennsylvania State University, USA) and Swaroop Ghosh (Pennsylvania State University, USA)	464

Optimization of Mutant Space for RTL Test Generation	472
A Reliability Study on CNNs for Critical Embedded Systems Mohamed A. Neggaz (LAMIH, Polytechnic University Hauts-De-France), Ihsen Alouani (IEMN, Polytechnic University Hauts-De-France), Pablo R. Lorenzo (The Silesian University of Technology, Poland), and Smail Niar (LAMIH, Polytechnic University Hauts-De-France)	476
Session 9A: Network on Chip and Synchronization	
DEC-NoC: An Approximate Framework Based on Dynamic Error Control with Applications to Energy-Efficient NoCs Yuechen Chen (The George Washington University), Md Farhadur Reza (The George Washington University), and Ahmad Louri (The George Washington University)	480
RETUNES: Reliable and Energy-Efficient Network-on-Chip Architecture	488
Accelerating Synchronization in Graph Analytics Using Moving Compute to Data Model on Tilera TILE-Gx72 Halit Dogan (University of Connecticut), Masab Ahmad (University of Connecticut), Jose Joao (Arm Research), and Omer Khan (University of Connecticut)	496
Eca-Router: On Achieving Endpoint Congestion Aware Switch Allocation in the On-Chip Network Cunlu Li (National University of Defense Technology, China), Dezun Dong (National University of Defense Technology, China), and Xiangke Liao (National University of Defense Technology, China)	506
Accurate Performance Bounds Calculation for Dynamic Voltage-Freq Islands in Best Effort NoCs Dara Rahmati (Institute for Research in Fundamental Sciences (IPM)), Sobhan Masoudi (Islamic Azad University, Central Tehran Branch), Ahmad Khonsari (University of Tehran, Institute for Research in Fundamental Sciences (IPM)), and Reza Sabbaghi-Nadooshan (Islamic Azad University, Central Tehran Branch)	510
Session 9B: Potpouri 2	
Design and Evaluation of a PVT Variation-Resistant TRNG Circuit	514
Hardware-Based Probabilistic Threat Detection and Estimation for Embedded Systems	522

Reverse Engineering of Split Manufactured Sequential Circuits Using Satisfiability Checking	530
Minimizing Thermal Variation in Heterogeneous HPC Systems with FPGA Nodes	537
Session 10A: File System and Cloud	
A Compact AES Hardware Implementation Secure Against 1st-Order Side-Channel Attacks	545
PFCG: Improving the Restore Performance of Package Datasets in Deduplication Systems Chunxue Zuo (Wuhan National Lab for Optoelectronics, Huazhong University of Science and Technology), Fang Wang (Wuhan National Lab for Optoelectronics, Huazhong University of Science and Technology), Ping Huang (Department of Computer and Information Sciences, Temple University, USA), Yuchong Hu (Wuhan National Lab for Optoelectronics, Huazhong University of Science and Technology), Dan Feng (Wuhan National Lab for Optoelectronics, Huazhong University of Science and Technology), and Yucheng Zhang (Wuhan National Lab for Optoelectronics, Huazhong University of Science and Technology)	553
OME: An Optimized Modeling Engine for Disk Failure Prediction in Heterogeneous Datacenter Yanwen Xie (Huazhong University of Science and Technology, China), Dan Feng (Huazhong University of Science and Technology, China), Fang Wang (Huazhong University of Science and Technology, China), Xinyan Zhang (Huazhong University of Science and Technology, China), Jizhong Han (Chinese Academy of Sciences, China), and Xuehai Tang (Chinese Academy of Sciences, China)	561
Enabling Accurate Performance Isolation on Hybrid Storage Devices in Cloud Environment	565

LEA: A Lazy Eviction Algorithm for SSD Cache in Cloud Block Storage	
Session 10B: FPGA and Machine Learning	
2000.002	
Fine-Grained Parallel Routing for FPGAs with Selective Expansion	7
DEEP: Dedicated Energy-Efficient Approximation for Dynamically Reconfigurable	
Architectures	37
Siyuan Xu (The University of Texas at Dallas, TX, USA) and Benjamin Carrion Schafer (The University of Texas at Dallas, TX, USA)	
Load Balance-Aware Multi-Core Parallel Routing for Large-Scale FPGAs)5
Using Machine Learning to Predict Path-Based Slack from Graph-Based Timing Analysis)3
Analysis of Row Hammer Attack on STTRAM	A
Author Index 61	3