73rd World Foundry Congress (WFC 2018)

Creative Foundry

Scientific and Technical

Krakow, Poland 23 - 27 September 2018

ISBN: 978-1-5108-8041-2

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2018) by World Foundry Organization Ltd All rights reserved.

Printed by Curran Associates, Inc. (2019)

For permission requests, please contact World Foundry Organization Ltd at the address below.

World Foundry Organization Ltd Winton House, Lyonshall Kington, Herefordshire HR5 3JP, United Kingdom

Phone: +44 (0) 1544 340332 Fax: +44 (0) 1544 340332

www.thewfo.com

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: 845-758-0400 Fax: 845-758-2633

Email: curran@proceedings.com Web: www.proceedings.com

Contents

Scientific

ŊЛ:	atα	rial	c.

11 –	Solidification characteristics of silicon alloyed ductile cast irons	
	I. Riposan, POLITEHNICA University of Bucharest, Materials Science and Engineering Faculty, Romania	2:
16 –	Effect of intensive cooling of alloy AlSi7Mg with alloy additions on the microstructure and mechanical properties	
	B. Pisarek, Lódź University of Technology, Department of Materials Engineering and Production Systems, Poland	23
17 –	The influence of wall thickness on the fatigue limit of V-notched bars made of as-cast or heat treated ductile iron	
	S. Masaggia, Zanardi Fonderie S.p.A., Italy	25
20 –	Development of a squeeze semisolid high pressure die casting process for magnesium structural parts	
	I. Vicario, Tecnalia Research & Innovation, Spain	27
21 –	On quantitative metallography vacuum casted Ni-based superalloy used in aero jet engine construction – turbine blades SEM	
	structure analysis after various working hours	
	J. Belan, University of Žilina, Department of Material Engineering, Slovakia	29
22 –	Quality assessment of sand castings from aluminum cast alloy using image and CT analysis	
	L. Kuchariková, University of Žilina, Department of Materials Engineering, Slovakia	3:
23 –	Mechanical and fatigue properties of nodular cast irons	
	A. Vaško, Department of Materials Engineering, University of Žilina, Faculty of Mechanical Engineering, Slovakia	33
38 –	Effects of manganese content and cooling rate on fatigue in limit heavy sectional spheroidal graphite cast iron	
	N. Shiraki, Tokyo City University, Faculty of Engineering, Japan	35
41 –	Influence of defects on HPDC strength and effectiveness of gas porosity dispersion by atomized flow	
	M. Nakagawa, Motorcycle R&D Center, Honda R&D Co., Ltd., Japan	37
47 –	Study of AlSi7MgCu alloy with improved properties in as-cast state	
	Z. Brodarac, University of Zagreb, Faculty of Metallurgy, Croatia	39
51 –	Data mining methods for properties prediction with TDA curves of the hypoeutectic Al–Si alloys	
	D. Wilk–Kołodziejczyk, Foundry Research Institute, Poland	41
55 –	Effect of composition and microstructure on the fatigue life of quaternary SnZnAgCu lead–free alloy	
	K. Pietrzak, Institute of Precision Mechanics, Poland	43
59 –	Heteroepitaxial growth of passivating layers on rutile in contact with molten aluminium and molten A356 aluminium alloy	
	A. Salomon, TU Bergakademie Freiberg, Institute of Materials Science, Germany	45
60 –	Non-metallic inclusions and their influence on the mechanical properties of 18 CrNiMo7-6 steel treated in different crucibles	
	M. Seleznev, Institute of Materials Engineering, TU Bergakademie Freiberg, Germany	47
61 –	Profiling the quality of bentonite clay with dilatometry	
	J. Thiel, Metal Casting Center, University of Northern Iowa, USA	49
67 –	Fatigue behavior on heavy section ductile iron casting manufactured in grade EN-GJS-500-14	
	M. A. Altuna, Grupo WEC, Spain	51
70 –	ADI – the material revolution and its applications at CMRDI	
	A. Nofal, Central Metallurgical R&D Institute CMRDI, Foundry Technology Department, Egypt	53
72 –	Interaction of AlSi ₂ Mg with oxidic filter materials	
	B. Fankhänel, TU Bergakademie Freiberg, Institute for Nonferrous Metallurgy and Purest Materials, Germany	55
<i>/6</i> –	The modified low-cycle fatigue test as a quick and economic criterion of the quality of ductile iron after normalizing annealing	_
	M. Maj, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	57
83 –	Influence of investment casting parameters on creep resistance of Ni–based superalloy	_
	Ł. Rakoczy, AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Poland	59
84 –	Effect of melt pouring temperature and composition of primary coating of shell mould on tensile deformation behavior of IN713	3C
	superalloy A CH University of Science and Technology Faculty of Metals Engineering and Industrial Computer Science Poland	c,
00	Ł. Rakoczy, AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Poland Prediction of microstructure of grey cast irons by electrical resistivity measurements	6:
90 -		c.
02 –	M. Petrič, University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Materials and Metallurgy, Slovenia Research and analysis of the foundry coatings influence on the mould filling process	0:
<i>32</i> –	Y. Nikolaichyk, Belarusian National Technical University, Foundry Department, Belarus	6!
97 -	Influence of filter surface chemistry on the filtration of aluminum melt	U.
<i>J</i> , -	C. Voigt, TU Bergakademie Freiberg, Institute of Ceramic, Glass and Construction Materials, Germany	67
100 -	- Effect of trace elements on microstructure and material properties of an aluminium alloy	5
	T Pahel Austrian Foundry Research Institute Austria	60

101 – Preparation of magnesium borate fibers by electrospinning	
E. Storti, TU Bergakademie Freiberg, Institute of Ceramic, Glass and Construction Materials, , Germany	71
102 – Ceramic filters with coatings based on nano-materials or calcium aluminates with carbon for steel melt filtration	
E. Storti, TU Bergakademie Freiberg, Institute of Ceramic, Glass and Construction Materials, Germany	73
103 – The effect of the substitution of silicon by aluminum on the mechanical properties of gray iron	
E. Aguado, IK4–AZTERLAN, Spain	75
107 – Prediction of chunky graphite on the base of numerical simulation and experimental data	
B. Bauer, University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Croatia	77
110 – Preliminar mechanical properties and microstructures obtained after casting a modified Al–Zn–Mg wrought alloy	
R. Hidalgo, Mondragon University, Spain	79
111 – Effect of single and double solution treatment on second phase dissolution of an Al-8.5Si-1.5Cu-0.4Mg alloy with different in	nitial
cooling rates	
E. Ochoa de Zabalegui, Edertek Technology Center of FAGOR EDERLAN Group, Spain	81
113 – Effect of micro–scale gas bubbles on steel filtration: a numerical study	
A. Asad, Technische Universität Bergakademie Freiberg, Institute of Mechanic and Fluid Dynamics, Germany	83
114 – 3-Dimensional imaging of spheroidal graphite by ultra-high voltage electron microscopy	
H. Maeda, Ryukoku Unversity, Faculty of Science & Technology, Japan	85
116 – Mechanical behaviour of nodular cast irons after prolonged high temperature exposure	
A. Morri, University of Bologna, Department of Industrial Engineering, Italy	87
126 – Influence of shrinkage porosity on fracture under tensile stress in ductile cast iron	
J. Massone, National University of Mar del Plata, INTEMA–CONICET, Metallurgy Division, Argentina	89
138 – Metallography for cast Al–alloys using FIB–SEM	
T. Bončina, University of Maribor, Faculty of Mechanical Engineering, Slovenia	91
139 – Strengthening of Al–casting alloys by quasicrystalline precipitates	
F. Zupanič, University of Maribor, Faculty of Mechanical Engineering, Slovenia	93
150 – Characterization of composite ceramic materials used during investment casting of aircraft engines components	
R. Cygan, Rzeszow University of Technology, Poland	95
151 – Influence of the selected superalloy and ceramic crucible on the melting and melt–pouring process during the investment cast	ing of
the aircraft components	<i>3</i> -,
R. Cygan, Rzeszow University of Technology, Poland	97
163 – Morphological evolution of semisolid Mg–Al–La–Ca magnesium alloy produced by mechanical stirring process (MSP)	
S. Bartex, Federal University of Rio Grande do Sul, Metallurgical Department, Brazil	99
164 – Determination of gray cast iron age strengthening by non-destructive methods: effect of alloying elements	
A. Vaucheret, ECAM Lyon, France	101
168 – The effect of Sr and impurities interaction on the Al–7%Si–0.3%Mg alloys	
T. Fukuhara, Shoko. Co., Ltd., Japan	103
172 – Development of in situ fabrication process of clad materials by usina tandem twin–roll castina	
172 – Development of in situ fabrication process of clad materials by using tandem twin–roll casting S. Kumai, Tokyo Institute of Technology, Department of Materials Science and Engineering, Japan	105
S. Kumai, Tokyo Institute of Technology, Department of Materials Science and Engineering, Japan	
S. Kumai, Tokyo Institute of Technology, Department of Materials Science and Engineering, Japan 175 – An investigation on microstructural and mechanical properties of ceramic moulds applied in the investment casting of critical	
S. Kumai, Tokyo Institute of Technology, Department of Materials Science and Engineering, Japan 175 – An investigation on microstructural and mechanical properties of ceramic moulds applied in the investment casting of critical of aircraft engines	parts
S. Kumai, Tokyo Institute of Technology, Department of Materials Science and Engineering, Japan 175 – An investigation on microstructural and mechanical properties of ceramic moulds applied in the investment casting of critical of aircraft engines M. Ksiazek, Foundry Research Institute, Complex of Research Laboratories, Poland	
S. Kumai, Tokyo Institute of Technology, Department of Materials Science and Engineering, Japan 175 – An investigation on microstructural and mechanical properties of ceramic moulds applied in the investment casting of critical of aircraft engines M. Ksiazek, Foundry Research Institute, Complex of Research Laboratories, Poland 183 – Effect of temperature on the structure and magnetic properties of zinc ferrite nanoparticles	parts
S. Kumai, Tokyo Institute of Technology, Department of Materials Science and Engineering, Japan 175 – An investigation on microstructural and mechanical properties of ceramic moulds applied in the investment casting of critical of aircraft engines M. Ksiazek, Foundry Research Institute, Complex of Research Laboratories, Poland 183 – Effect of temperature on the structure and magnetic properties of zinc ferrite nanoparticles A. Kmita, AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Poland	parts
S. Kumai, Tokyo Institute of Technology, Department of Materials Science and Engineering, Japan 175 – An investigation on microstructural and mechanical properties of ceramic moulds applied in the investment casting of critical of aircraft engines M. Ksiazek, Foundry Research Institute, Complex of Research Laboratories, Poland 183 – Effect of temperature on the structure and magnetic properties of zinc ferrite nanoparticles A. Kmita, AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Poland 184 – Influence of the heating rate on the thermal decomposition kinetics of the chemical cured binder	107 109
S. Kumai, Tokyo Institute of Technology, Department of Materials Science and Engineering, Japan 175 – An investigation on microstructural and mechanical properties of ceramic moulds applied in the investment casting of critical of aircraft engines M. Ksiazek, Foundry Research Institute, Complex of Research Laboratories, Poland 183 – Effect of temperature on the structure and magnetic properties of zinc ferrite nanoparticles A. Kmita, AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Poland 184 – Influence of the heating rate on the thermal decomposition kinetics of the chemical cured binder A. Kmita, AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Poland	parts
S. Kumai, Tokyo Institute of Technology, Department of Materials Science and Engineering, Japan 175 – An investigation on microstructural and mechanical properties of ceramic moulds applied in the investment casting of critical of aircraft engines M. Ksiazek, Foundry Research Institute, Complex of Research Laboratories, Poland 183 – Effect of temperature on the structure and magnetic properties of zinc ferrite nanoparticles A. Kmita, AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Poland 184 – Influence of the heating rate on the thermal decomposition kinetics of the chemical cured binder A. Kmita, AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Poland 187 – Revealing of microstructural features in Haynes® 282® superalloy subjected to various heat treatments	107 109 111
S. Kumai, Tokyo Institute of Technology, Department of Materials Science and Engineering, Japan 175 – An investigation on microstructural and mechanical properties of ceramic moulds applied in the investment casting of critical of aircraft engines M. Ksiazek, Foundry Research Institute, Complex of Research Laboratories, Poland 183 – Effect of temperature on the structure and magnetic properties of zinc ferrite nanoparticles A. Kmita, AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Poland 184 – Influence of the heating rate on the thermal decomposition kinetics of the chemical cured binder A. Kmita, AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Poland 187 – Revealing of microstructural features in Haynes® 282® superalloy subjected to various heat treatments A. Polkowska, Foundry Research Institute, Poland	107 109
S. Kumai, Tokyo Institute of Technology, Department of Materials Science and Engineering, Japan 175 – An investigation on microstructural and mechanical properties of ceramic moulds applied in the investment casting of critical of aircraft engines M. Ksiazek, Foundry Research Institute, Complex of Research Laboratories, Poland 183 – Effect of temperature on the structure and magnetic properties of zinc ferrite nanoparticles A. Kmita, AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Poland 184 – Influence of the heating rate on the thermal decomposition kinetics of the chemical cured binder A. Kmita, AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Poland 187 – Revealing of microstructural features in Haynes® 282® superalloy subjected to various heat treatments A. Polkowska, Foundry Research Institute, Poland 188 – Microstructure effects of Y ₂ O ₃ addition to A356 alloy	107 109 111 113
S. Kumai, Tokyo Institute of Technology, Department of Materials Science and Engineering, Japan 175 – An investigation on microstructural and mechanical properties of ceramic moulds applied in the investment casting of critical of aircraft engines M. Ksiazek, Foundry Research Institute, Complex of Research Laboratories, Poland 183 – Effect of temperature on the structure and magnetic properties of zinc ferrite nanoparticles A. Kmita, AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Poland 184 – Influence of the heating rate on the thermal decomposition kinetics of the chemical cured binder A. Kmita, AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Poland 187 – Revealing of microstructural features in Haynes® 282® superalloy subjected to various heat treatments A. Polkowska, Foundry Research Institute, Poland 188 – Microstructure effects of Y ₂ O ₃ addition to A356 alloy S. El-Hadad, Central Metallurgical Research and Development Institute, Egypt	107 109 111
S. Kumai, Tokyo Institute of Technology, Department of Materials Science and Engineering, Japan 175 – An investigation on microstructural and mechanical properties of ceramic moulds applied in the investment casting of critical of aircraft engines M. Ksiazek, Foundry Research Institute, Complex of Research Laboratories, Poland 183 – Effect of temperature on the structure and magnetic properties of zinc ferrite nanoparticles A. Kmita, AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Poland 184 – Influence of the heating rate on the thermal decomposition kinetics of the chemical cured binder A. Kmita, AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Poland 187 – Revealing of microstructural features in Haynes® 282® superalloy subjected to various heat treatments A. Polkowska, Foundry Research Institute, Poland 188 – Microstructure effects of Y ₂ O ₃ addition to A356 alloy S. El-Hadad, Central Metallurgical Research and Development Institute, Egypt 193 – Fabrication of aluminum based functionally graded materials by centrifugal casting and their application of grinding wheels	107 109 111 113
S. Kumai, Tokyo Institute of Technology, Department of Materials Science and Engineering, Japan 175 – An investigation on microstructural and mechanical properties of ceramic moulds applied in the investment casting of critical of aircraft engines M. Ksiazek, Foundry Research Institute, Complex of Research Laboratories, Poland 183 – Effect of temperature on the structure and magnetic properties of zinc ferrite nanoparticles A. Kmita, AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Poland 184 – Influence of the heating rate on the thermal decomposition kinetics of the chemical cured binder A. Kmita, AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Poland 187 – Revealing of microstructural features in Haynes® 282® superalloy subjected to various heat treatments A. Polkowska, Foundry Research Institute, Poland 188 – Microstructure effects of Y ₂ O ₃ addition to A356 alloy S. El-Hadad, Central Metallurgical Research and Development Institute, Egypt	107 109 111 113

202 – Novel method of thermal conductivity measurement using Stefan–Boltzmann law	
P. Wieliczko, Foundry Research Institute, Poland	12:
204 – Physico – chemical, structural and derivatographic studies of bentonite clays from national deposits	
J. Kamińska, Foundry Research Institute, Poland	123
206 – Wettability improvement of woven fabric for aluminium casting reinforcement	
S. Cruz, Eurecat, Spain	12!
211 – Research on coatings and infiltration to strengthen ceramic lost cores used in high pressure die casting processes	
M. Merchán, Fundación Tecnalia R&I, Spain	12
214 – Mechanical and structural characterization of cast iron using synchrotron light	
L. Elmquist, Swerea SWECAST, Sweden	129
218 – Thermal stability of a resin binder used in moulding sand technology	
A. Roczniak, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	13:
220 – Deformation behavior of pure copper castings with as–cast surfaces for electrical parts	
I. Goto, Akita University, Graduate School of Engineering Science, Japan	133
225 – Amplitude dependence of internal damping of magnesium alloys before and after plastic deformation	
M. Uhríčik, University of Žilina, Department of Materials Engineering, Slovakia	13
229 – Influence of mischmetal on impact toughness and morphology of G20Mn5 cast steel fractures	4.0
J. Kasińska, Kielce University of Technology, Poland	13
233 – Technology of alloy layers on surface of castings T. Weithel, Clasica University of Technology, Department of Feynday Fasingering, Beland	12
T. Wróbel, Silesian University of Technology, Department of Foundry Engineering, Poland	139
234 – Strength properties of ceramic moulds containing waste moulding sand after initial reclamation as a substitute for base sand	14:
M. Angrecki, Foundry Research Institute, Poland 235 – Experimental and simulation studies of cores making process with blowing methods	14.
R. Dańko, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	143
236 – A study of Mg–Cu interreaction in copper–alloyed ADI	14.
M. Górny, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	145
237 – Environmentally friendly foundry molding and core sands	14.
K. Major–Gabryś, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	147
240 – Cast iron "Vari – Morph" (VM) with graphit of several forms – material for castings of special destinations	1-7.
J. Postuła, Fansuld Cast Iron Foundry, Poland	149
243 – Lead–free casting brasses. Analysis of microstructure and properties combined with the casting technology	
J. Kozana, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	15:
245 – Influence of structural discontinuities on the fatigue life of aluminium alloys of 4XXO series	
J. Zych, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	153
249 – Effect of aluminum melt treatment by nanosecond electromagnetic pulses on structure and properties of castings	
V. Deev, National University of Science and Technology MISIS, Department of Foundry Technology, Russian Federation	15
251 – Investigations of the influence zone of chills – on the casting of the plate made of AlSi7Mg alloy, after the heat treatment T6	
M. Piękoś, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	15
259 – Microalloying of Al–5%Cu aluminum alloy with nickel aluminides and rare–earth metals	
E. Ri, Department of Foundry Engineering and Metal Technology, Pacific National University, Russian Federation	159
264 – Fabrication method of silicon carbide by infiltration of molten Fe–Si alloy through two–step reaction sintering	
Y. Hanada, FUJICO Co., Ltd., Japan	16:
265 – Microstructure and tribological properties of Co–Cr alloys used for metal elements in prosthetic technique	
J. Augustyn-Nadzieja, AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science	,
Poland	163
271 – Optymalization of mould preheating process to reduce formation of gases during investment casting of Ni-based alloys	
M. Grudzień, Foundry Research Institute, Poland	16
273 – Characterization of primary microstructure of thin-walled Ni-based superalloy casting	
M. Grudzień, Foundry Research Institute, Poland	16
274 – Structure and mechanical properties of austempered grey iron (AGI)	
K. Jaśkowiec, Foundry Research Institute, Poland	169
275 – Determining the effect of austempering temperature on the morphology of ausferrite in ADI using computer image analysis at	nd
X–ray diffractometry	
K. Jaśkowiec, Foundry Research Institute, Poland	17:
276 – Use of the ATND method to assessment of EN AC-AlSi9Mg alloy hardness moulded in metal moulds	
J. Pezda, University of Bielsko–Biała, Department of Production Engineering and Automation, Poland	173
279 – Wear properties of milled carbon fiber-reinforced aluminum alloy composites	
K. Asano, Kindai University, Faculty of Science and Engineering, Department of Mechanical Engineering, Japan	175

281 – The decreasing microstructure degradation of fiber base feeder sleeve with various refractory coatings	
H. Kahraman, Cukurova Kimya Endustrisi A.S., Turkey	177
283 – Effect of molten metal temperature on mold filling in evaporative pattern casting	
T. Maruyama, Kansai University, Department of Chemistry and Material Engineering, Japan	179
296 – Influence of heat treatment on the microstructure and corrosion resistance of austempered ductile iron	
H. Krawiec, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	181
297 – Mechanical properties of phenolic urethanic sand after thermal regeneration at 930°C	
T. Nascimento, Federal Institute Education Science Technology of Rio Grande do Sul, Brazil	183
304 – Development of numerical model for core gas generation by the reaction with binder in sand cores and transport in molten me	tal
S. Kim, AnyCasting Software, Co. Ltd., South Korea	185
305 – Grain boundary wetting in the tungsten–nickel alloys	
B. Straumal, National University of Science and Technology «MISIS», Russian Federation	187
306 – Grain boundary wetting phenomena in the NdFeb-based commercial alloys	
B. Straumal, National University of Science and Technology «MISIS», Russian Federation	189
314 – Effect of nickle content on microstructural evolution in austempered solution strengthened ferritic ductile cast iron	
T. Tokunaga, Kyushu Institute of Technology, Japan	191
318 – Dammage micromechanism in spheroidal cast iron as affected by graphite/matrix interface interactions	
M. Warmuzek, Foundry Research Institute, Poland	193
321 – Grain size prediction model in aluminium castings manufactured by low pressure technology	
A. Fernàndez–Calvo, IK4–AZTERLAN, Spain	195
322 – The role of aluminium in the cast iron spheroidizing process	
M. Soiński, The Jacob of Paradies University, The Department of Technology, Poland	197
326 – General concept of cast metal matrix composites design	
E. Prusov, Vladimir State University named after Alexander and Nikolay Stoletovs, Department of Functional and Constructional Mate	rials
Technology, Russian Federation	199
333 – Investigation of the efficiency of grain refiners on the hot tearing in Al8Si3Cu	
M. Uludag, Metallurgical and Materials, Bursa Technical University, Turkey	201
334 – The effect of Sr modification and Ti grain refinement on the mechanical properties of A356	
M. Uludağ, Bursa Technical University, Metallurgical and Materials Engineering, Turkey	203
342 – Influence of T6 heat treatment on secondary AlSi9Cu3(Fe) alloy produced by semi–solid seed process	
A. Fabrizi, University of Padova, Department of Management and Engineering, Italy	205
345 – Shrinkage porosity formation in cast iron components	
A. Diószegi, Jönköping University, Sweden	207
346 – Influence of carbon on the formation of microstructure and mechanical properties of Co–Cr–Mo and Co–Cr–W–Mo cast alloys	
J. Augustyn–Nadzieja, AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science,	
Poland	209
349 – Influence of the low Ti addition on gray cast iron properties produced with increased steel scrap in the charge	244
P. Futas, Slovak University of Technology in Bratislava, Slovakia	211
351 – The wear mechanism of mill beaters for coal grinding made-up from high manganese cast steel	212
J. Krawczyk, AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Poland 352 – Role of chemical composition on secondary cementite morphology in alloyed cast seels	213
J. Krawczyk, AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Poland	215
354 – Determination of content of phenol in foundry resins by pyrolysis gas chromatography–mass spectrometry method	213
S. Żymankowska–Kumon, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	217
357 – Influencing crystallization of austenitic manganese steel by modification with complex alloying elements	21/
Š. Eperješi, Technical University of Kosice, Slovakia	219
359 – Determination of transformation temperatures and solidification sequence of the Mg–Al–La–Ca alloy	213
V. De Barcellos, Federal University of Rio Grande do Sul, Brazil	221
367 – Preparation, properties and applications of the novel polymer binders BioCo	221
B. Grabowska, K. Kaczmarska, A. Bobrowski	223
369 – Influence of the master alloy Ti–Fe on the microstructure and selected properties of copper and copper alloys	
M. Piękoś, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	225
370 – Investigations of the titanium influence on the structure and selected properties of tin bronzes	
J. Kozana, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	227
372 – Comparison of the properties of the alkaline–phenolic binders for the moulding sand for the steel castings	_,
R. Kania, Pioma–Odlewnia Sp. z o.o., Poland	229
373 – Ambient temperature influence on the properties of the moulding sand with the alkaline–phenolic binder	
A. Bul, Pioma–Odlewnia Sp. z o.o., Poland	231

377 – Time-resolved and in-situ 2D / 3D imaging of solidification in ductile cast iron	
H. Yasuda, Kyoto University, Department of Materials Science and Engineering, Japan	233
378 – Feasibility of us foundry supply chain consumables for three dimensional sand printing	
S. Giese, University of Northern Iowa, Metal Casting Center, USA	235
380 – Liquid–phase bonding of carbon/carbon and porous carbon for structural and thermal management applications	
R. Asthana, University Of Wisconsin-Stout, Engineering & Technology, USA	237
385 – Use of high intensity X-ray analysis as tool to create new, fundamental models for phase transformations and residual stress	in
ductile cast iron	
N. Tiedje, Technical University of Denmark, Mechanical Engineering, Denmark	239
391 – Increase precision and yield in casting production by simulation of the solidification process based on realistic material data evaluation of the solidification process.	uated
from thermal analysis (using the ATAS MetStar System)	
P–E. Persson, Novacast Systems AB, Sweden	241
394 – Application of differential scanning calorimetry (DSC) for evaluation of aluminium alloys billets homogenization parameters	
G. Włoch, AGH University of Science and Technology, Faculty of Non–Ferrous Metals, Poland	243
395 – Analysis of the temperature distribution in the sample during the hot distortion parameter testing	
J. Jakubski, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	245
402 – The study on tensile stength of AlSi21CuNiMg silumin in the final stage of solidification and the initial stage of self–cooling	
R. Romankiewicz, University of Zielona Góra, Faculty of Mechanical Engineering, Poland	247
407 – Microstructural characterization of Fe/tic composite zones produced in situ using glassy carbon	
M. Gajewska, Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Poland	249
410 – Effect of modification on the thermal analysis of grain refining in A319 Al–Si–Cu alloys	
W. Khalifa, Cairo University, Faculty of Engineering, Egypt	251
413 – Design of competitive light-weight composite materials: SiC/TiSi ₂	
D. Giuranno, Foundry Research Institute, Poland	253
415 – Structure and properties of high nickel austempered ductile iron	
A. Kochański, Warsaw University of Technology, Faculty of Production Engineering, Poland	255
420 – Quality index of AlSi7Mg0.3 silumin from the perspective of refining methods	
A. Garbacz–Klempka , AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	257
426 – Influence of magnesium matrix composition on pressure infiltration of glassy carbon foam	
A. Olszówka–Myalska, Silesian University of Technology, Faculty of Materials Science and Engineering, Poland	259
427 – Main directions of recent works on AlZn based alloys for foundry engineering	
W. Krajewski, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	261
434 – Effect of solidification factors on cast structure and 'A' segregation for an ultra large section strand of a vertical semi–continu	ous
caster of steel	
K. Oh, POSCO, South Korea	263
435 – Microstructure quality assessment of isothermed ductile irons through tensile tests	
F. Zanardi, Zanardi Fonderie S.p.A., Italy	265
438 – Nanomultilayers for joining applications	267
J. Janczak–Rusch, Empa, Swiss Federal Laboratories for Materials Science and Technology, Switzerland	267
441 – Experimental device for investigation of low vapour pressure liquid metals and their interaction in contact with refractory mat	
A. Kudyba, Foundry Research Institute, Poland	269
442 – Enhancing the permeability and properties of ceramic shell in investment casting process using ABS powder and needle coke	
D. Karunakar, Shenyang Research Institute of Foundry, Department of Mechanical and Industrial Engineering Department, Sheny	_
Research Institute of Foundry, India 444. Comparative study of interaction of India substrates with liquido Ni and CSAVA allow	271
444 – Comperative study of interaction of kaolin substrates with liquide Ni and CSMX4 alloy B. Novek, Founday Research Institute, Poland	272
R. Nowak, Foundry Research Institute, Poland	273
451- High-temperature interaction of molten conventional grey cast iron and Al ₂ O ₃ -ZrO ₂ ceramic	275
L. Drenchev, Institute of Metal Science, Equipment and Technologies with Hydroaerodynamics Centre, Bulgaria 452 – Thermal conductivity of selected vermicular cast iron alloys	2/5
M. Homa, Foundry Research Institute, Poland	277
453 – Simoultanoeus TG–DTA thermal analysis of Si–30B alloy	211
M. Homa, Foundry Research Institute, Poland	279
·	2/3
455 – Wettability of two–dimensional MoS ₂ layer by liquid tin G. Bruzda, Foundry Research Institute, Poland	281
456 – The influence of alloying additions on the interaction between re-melted vermicular graphite cast iron and Al ₂ O ₃ substrate	201
G. Bruzda, Foundry Research Institute, Poland	283
458 – The effect of boron content on wetting kinetics in Si–B alloy/h–BN SYSTEM	203
W. Polkowski, Foundry Research Institute, Poland	285
o.mo.nom, . oundry neocuren montace, i olumu	200

459 -	- The effect of surface condition on wetting of Hastelloy® x by Brazer Alloy of Ni–Pd–Cr–B–Si system	20-
	A. Kudyba, Foundry Research Institute, Poland	287
460 -	- Improvement of TiC/Fe in situ composite layer formation on the surface of Fe-based castings	
	Ł. Szymański, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	289
463 -	- Liquid metal engineering for Creative Foundry: from Lab to Fab	201
	N. Sobczak, Foundry Research Institute, Poland	291
	Technology:	
7-	Use of a mathematical treatment for the prediction of structural zones localization in the continuously cast brass ingots	
	W. Wołczyński, Polish Academy of Sciences, Institute of Metallurgy and Materials Science, Poland	295
28 –	Increasing productive efficiency of casting of ferrous and non–ferrous alloys	
	M. Sadokha, JSC BELNIILIT, Republic of Belarus	297
34 –	Electromagnetic method for control the solidification of Al 99.99	
	M. Pokusová, Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Slovakia	299
91 –	Recycling of dispersed metal wastes in rotary furnaces – a method of creating a new source of raw materials for foundry	
	S. Rovin, UE "Technolit", Belarus	301
95 –	Complete master of the complex casting in the technology of high pressure die–casting	
	P. Mrvar, University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Materials and Metallurgy, Slovenia	303
99 –	Studies of accelerated microwave drying of ceramic moulds	
	P. Just, Lodz University of Technology, Department of Materials Engineering and Production Systems, Poland	305
115 -	- Influence of Mn and Cr on intermetallic sludge formation in Fe containing secondary AlSi9Cu3 alloy with aim of reducing Fe lev	el by
	filtration	
	B. Dietrich, TU Bergakademie Freiberg, Foundry–Institute, Germany	307
125 -	- Visual inspection of investment castings made of nickel—based superalloy	
	P. Rokicki, Rzeszow University of Technology, Research and Development Laboratory for Aerospace Materials, Poland	309
129 -	- Wettability measurement of AlSi _, Mg on Al ₂ O ₃ , MgAl ₂ O ₄ , 3Al ₂ O ₃ ·2SiO ₂ and TiO ₂ at 730°C	
	C. Voigt, TU Bergakademie Freiberg, Institute of Ceramic, Glass and Construction Materials, Germany	311
137 -	- Numerical simulation of steel melt filtration	
	C. Demuth, TU Bergakademie Freiberg, Institute of Thermal Engineering, Germany	313
141 -	Determination of critical cooling rate for minimization of porosity in the large aluminum casting	
	I. Cho, ICT Manufacturing Group, Korea Institute of Industrial Technology, South Korea	315
146 -	- Optimization of the die casting process of thick-wall bush made of compound aluminum bronze	
	D. Kołakowski, Lódź University of Technology, Department of Materials Engineering and Production Systems, Poland	317
152 -	- Influence of printed ceramic filters on temperature field distribution during investment casting of thin–walled Ni–based supera	lloys
	M. Antosz, Rzeszow University of Technology, Poland	319
154 -	- Influence of powder additives in two component environmentally friendly inorganic binder systems on strength behavior	
	M. Conev, Technical University of Košice, Faculty of Materials, Metallurgy and Recycling, , Slovakia	321
166 -	- Improvement of the manufacturing technology of cast steel castings to be used in extreme operating condition	
	J. Jezierski, Silesian University of Technology, Department of Foundry Engineering, Poland	323
174 -	- Operational assistance system with direct manipulation of flow rate and falling position of outflow liquid in tilting–ladle–type	
	pouring machine	
	Y. Sueki, University of Yamanashi, Department of Mechanical Engineering, Japan	325
178 -	- Influence of thermo–physical properties of moulding sands on the solidification time of ductile cast iron	
	A. Brusilová, Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Slovakia	327
179 -	- Conductive stirring problems of steel in continuous casting process	
	A. Schrek, Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Slovakia	329
180 -	- The application of X–ray computed tomography to study the quality of ceramic moulds in precision foundry	
	A. Tchórz, Foundry Research Institute, Poland	331
186 -	- Development and application of cast steel numerical simulation system for heat treatment based on InteCAST	
	J. Zhou, Huazhong University of Science and Technology, State Key Laboratory of Materials Forming and Mould Technology, China	333
192 -	- Effects of green sand particle size distribution on squeeze compacting behavior analyzed by discrete element method	
	Y. Maeda, Daido University, Department of Mechanical Engineering, Japan	335
205 -	- Improved ultrasonic degassing of AlSi ₁₀ Mg alloy and its performance evaluation with the reduced pressure test (RPT) method	
	H. Galarraga, Fundación Tecnalia R&I, Spain	337
208 -	- Determination of the charge materials range in a multistage charge burden optimisation for the foundry furnaces	
	K. Schmalenberg, Odlewnie Polskie S.A., Poland	339
209 -	- Evaluation of the effect of ultrasonic degassing on components produced by high pressure die casting	
	M. da Silva, Eurecat, Centre Tecnólogic de Catalunya, Spain	341

222 -	Effect of curing parameters on selected technological properties of the moulding sand with inorganic cordis binder used for all casting of aluminium alloys	blation
	A. Grabarczyk, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	343
270 -	Geometric form of gating system elements and its influence on the initial filling phase	
	R. Dojka, Silesian University of Technology, Department of Foundry Engineering, Poland	345
288 -	Effect of increased temperature on dimensional and shape accuracy of castings produced from the EN AC-AlSi11 alloy by pre- die casting process	ssure
	A. Jarco, University of Bielsko–Biała, Department of Production Engineering and Automation, Poland	347
289 -	Application of patterns fabricated by the FDM technique (Fused Deposition Modeling) in precision casting	
	T. Pacyniak, Lodz University of Technology, Department of Materials Engineering and Production Systems, Poland	349
291 -	The inoculation effect of aluminum addition on selected high–chrome cast iron properties	
	A. Szczęsny, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	351
315 -	AZ91 magnesium based nanocomposites obtaned using thixomolding technology	551
	Ł. Rogal, Polish Academy of Sciences, Institute of Metallurgy and Materials Science, Poland	353
324 -	Nondestructive evaluation of ductile cast iron matrix via casting surface by electromagnetic method	333
J2-7	N. Horikawa, National Institute of Technology, Asahikawa College, Japan	355
327 -	• Challenges in gravity sand casting of ZE41 Mg alloy	333
327	D. Dispinar, Istanbul University, Faculty of Engineering, Turkey	357
220_	Lightweight die casting tools – a promising option for enhancing the high pressure die casting process	337
323	S. Müeller, Technische Universitaet Braunschweig, Institute of Joining and Welding, Germany	359
220_	Reconstruction of the casting technology of prehistoric bronze ornaments worked with the lost–wax technique on the bases of	
339-		metui
	science analyses, computer modelling and model alloys Z. Kwak, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	361
240		301
340-	· Study of (%TiO ₂)/ [%Ti] partition coefficient in cupola furnace	262
255	M. Castro–Román, Cinvestav Unidad Saltillo, Department of Metallurgical Engineering, Mexico	363
335 -	20 years of research projects targeted to zero defect manufacturing in diecasting	265
264	F. Bonollo, Padova University, Department of Engineering and Management (DTG), Italy	365
361 -	Investigations of the thickness of protective coatings deposited on moulds and cores	267
262	Ł. Jamrozowicz, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	367
363 -	Effect of CaSiAl modification on the microstructure and mechanical properties of low–carbon microalloyed cast steel with 0.0 and 0.07% 9	
	B. Kalandyk, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	369
365 -	Analisis of rapid drying process by set on fire of alcohol–based protective coatings applied on sand cores and moulds	
	J. Kolczyk–Tylka, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	371
92 – 1	Pouring process control based on high–speed image analysis of liquid flow	
	R. Tasaki, Toyohashi University of Technology, Department of Mechanical Engineering, Japan	373
398 -	· Verification and optimization of investment casting technology for production of cast metal sponges	
	I. Kroupová, VSB – Technical University of Ostrava, Faculty of Metallurgy and Material Engineering, Czech Republic	375
408 -	- Biography of bronze. Archaeometallurgical study on the casting technology of the lusatian culture communities in greater Pour Presesntation of the project	oland.
	A. Garbacz–Klempka, AGH University of Science and Technology, Faculty of Foudry Engineering, Poland	377
411 -	The use of synthetic slags in Polish foundry Metalodlew in Cracow	
	M. Balicki, Metalodlew SA, Poland	379
412 -	Two inoculation methods for refining as-cast grain structure in austenitic 316L steel	
	S. Lekakh, Missouri University of Science and Technology, USA	381
414 -	Si-Co and Si-Zr alloys/C-material interfaces: wetting versus infiltration	
	D. Giuranno, Foundry Research Institute, Poland	383
416 -	The role of recycled ceramic material obtained from the ceramic layered moulds used in the investment casting	
	A. Soroczyński, Warsaw University of Technology, Department of Plastic Forming and Foundry Engineering, Poland	385
439 -	Prediction of shrinkage porosity in ductile cast iron test castings	
	J. Hajkowski, Poznan University of Technology, CAD/CAE Material Technology & Foundry Laboratories, Poland	387
454 -	· Conventional and hybrid gasars: light-weight materials with pressure-temperature managed porosity	
	J. Sobczak, Foundry Research Institute, Poland	389
	Digitalization:	
42 –	Photography of atomized flow and LES-VOF simulation of die interior flow behavior under high-pressure die-casting	
	E. Koya, Honda R&D Co., Ltd., Motorcycle R&D Center, Japan	393

98 –	Application of explicit and implicit smoothed particle hydrodynamics simulation to casting processes	201
400	T. Suwa, Fujitsu Ltd., Japan	395
108 -	- Modeling and computation of casting process by particle method M. Kazama, Fujitsu Ltd., Japan	397
152 -	- Intelligent data analytics for foundry industry 4.0	397
133	M. Perzyk, Warsaw University of Technology, Faculty of Production Engineering, Poland	399
155 -	- Introducing Industry 4.0 in a die casting foundry	333
100	B. Dybowski, NEMAK POLAND Sp. z o.o., Poland	401
303 -	- Analysis of computer simulation data application for steel casting desing in order to reduce its weight	
	P. Żak, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	403
311 -	- Numerical and experimental studies on the cooling conditions of cast aluminium semi–finished product for forging process	
	M. Szucki, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	405
387 -	- Concept of the Smart Foundry platform integrating Industry 4.0 technologies.	
	P. Malinowski, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	407
389 -	- Application of selected artificial intelligence methods in the system predicting the microstructure of compacted graphite iron	
	B. Mrzygłód, AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Poland	409
417 -	- Computer simulation of solidification of casting with composite zone based on TiC reinforcement	
	S. Sobula, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	411
	Ecology:	
96 –	From waste foundry sand to a new biodegraded raw material, an ecological solution for foundries	
	P. Caballero, Tecnalia Research & Innovation, Spain	415
118 -	- Correlation of thermal analysis to binder emissions	
	S. Giese, University of Northern Iowa, USA	417
350 -	- Cupola furnace slag — its origin, properties and utilization	
	A. Pribulova, Technical University in Kosice, Faculty of Materials, Metallurgy and Recycling, Slovakia	419
423 -	- Innovation in the production of cast parts in the era of digitalization and tranzition towards circular economy according	
	to the "sharing"-type economic models	
	V. Soporan, Technical University of Cluj–Napoca, Department of Environmental Engineering and Sustainable Development	424
	Entrepreneurship, Romania	421
	Management:	
106 -	- The application of Resource and Process Consumption Accounting (RPCA/RCA) in a foundry entity	
	M. Latallo–Anulewicz, Foundry Research Institute, Poland	425
422 -	- Considerations on the correlation of engineering training with the developments in the field of the creative production of cast	
	V. Soporan, Technical University of Cluj–Napoca, Department of Environmental Engineering and Sustainable Development	427
	Entrepreneurship, Romania	
	Technical	
-	Materials: The freedom of creativity: Continue and additives consents analyting apparent construction and casting properties.	
5 –		431
11	R. Stötzel, ASK Chemicals GmbH, Germany	431
14 –	New Technology Platform ECOCURE BLUE: Reduction of emissions in foundry processes – First practical experiences	421
26	F. Lenzen, ASK Chemicals GmbH, Germany	433
26 –	Effect of magnesium inoculation on the microstructure and mechanical properties of a spheroidal cast iron knuckle: a focus on	tne
	steering arm S. Maybungu, Haiyarsity of Johannachurg, Matal Casting Tachnalogy Station, South Africa	435
16	S. Mavhungu, University of Johannesburg, Metal Casting Technology Station, South Africa	435
→ ∪ −	Study on properties of Hyper Duplex Stainless Steel 7A of ASTM A-890 (CD3MWN) B. Raha, Peekay Steel Castings Private Limited, India	437
105 -	- Additive manufactured hybrid segments for die casting dies equipped with conformal cooling channels	437
103-	W. Sokołowski, Oskar Frech GmbH Co. KG, Germany	439
109-	- Microstructure characterization of graded alloy cast iron for flashing/grinding plates used in grinding of ball bearings	435
205	P. Bhamawat, Mangalam Steelcast Pvt Ltd., India	441
117 -	- Adsorptive nature of gases present on high temperature treated carbonaceous materials	
,	R. Nelson, Superior Graphite, USA	443
		1-1-5

119 -	Problems and improvements on the production of large casting with Hi—Si ductile iron	
	T. Kanno, Kimura Foundry Co., Ltd., R&D, Japan	445
148 -	- Use of dilatometry to evaluate the high temperature characteristics of silica in chromite sand	
	J. Thiel, University of Northern Iowa, Metal Casting Center, University of Northern Iowa, United States	447
156 -	- Effect of Nd content on structures and mechanical properties of Mg–Gd alloys cast into sand molds	
	N. Sunayama, TANIDA Ltd., Japan	449
195 -	- Manufacturing of corrosive–resistant Cr–Ni steels and Ni–based alloys in vacuum furnaces	
	A. Zadera, Brno University of Technology, Faculty of Mechanical Engineering, Czech Republic	451
213 -	- Effect of austenitizing temperature on microstructure and mechanical properties of low–alloyed ausferritic ductile cast iron	
	M. Sokolnicki, Odlewnie Polskie S.A., Poland	٧.
221 -	- Prediction of shrinkage cavities of using casting simulation	
	H. Mitsuya, Muroran Institute of Technology, Japan	455
223 -	- Thermal stress analysis of TiC cast–in insertion multi–component white cast iron	
	S. Murase, Muroran Institute of Technology, Japan	457
227 -	- Effect of alloying element on the mechanical properties of high silicon ferritic ductile cast iron	
	K. Park, Namyang Metals Co., Korea	459
244 -	- Technological aspects of producing Certified Reference Material (CRM) for zinc alloys	4.64
246	Ł. Wierzbicki, Institute of Non-Ferrous Metals, Metal Processing Department, Poland	461
246 -	 - Development of Mg-Al-Sr-Ca system heat resistant alloy for die-casting excellent in castability and recyclability S. Saikawa, University of Toyama, Japan 	463
247	S. Salkawa, University of Toyama, Japan - Oxide ceramic and refractory materials for metallurgical processes and industries	403
24/-	F. Pantsialeyenka, The John Paul II Catholic University of Lublin, Faculty of Law and Social Sciences, Institute of Environmental	
	Engineering, Poland	465
258 -	- Cast components in super duplex alloys intercomparison between bench molding and three dimensional printing	403
230	Y. Tomita, Kimura Foundry Co., Ltd., Japan	467
262 -	- Influence of nickel content on erosive wear and heat treatment conditons behaviour of multi component white cast iron	407
202	K. Kusumoto, Muroran Institute of Technology, College of Design and Manufacturing Technology, Japan	469
277 -	- Abrasive wear characterictics of multi component white cast iron	-103
	K. Shimizu, Muroran Institute of Technology, College of Design and Manufacturing Technology, Japan	471
316 -	Nanokarb: engineered carbon additive for green sand ferrous foundries	
	V. Gurunath, Institue of Indian Foundrymen, India	473
341 -	- Microstrukture and hardness of high vanadium martensitic cast steel for wear resistant applications	
	J. Głownia, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	475
364 -	- Acticote CG range of coatings to reduce graphite degeneration at the surface zone of compacted graphite iron castings	
	U. Nwao – gu, Foseco Nederland BV, The Netherlands	477
371 -	The optimisation of the flowability of sand mixtures to produce high density and defect-free inorganically bonded sand cores	
	V. Haanappel, FOSECO Europe, The Netherlands	479
374 -	- Feeding technology	
	J. Kmetsch, Foseco Europe, Germany	481
388 -	- Automated intelligent coating concept for ferrous foundries	
	Ch. Genzler, Foseco Europe, The Netherlands	483
397 -	- Investigation and characterization of inclusions in aluminium cast alloys for automotive industry	
	O. Ozaydin, Cevher Wheels, Research & Development Department, Turkey	485
433 -	- Local composite reinforcement type TiC/FeCr fabricated in situ in blade casting	
	Ł. Szymański, Innerco Ltd., Poland	487
436 -	- New materials in mould making are required to meet the new challenges in die casting	
	T. Hoehn, Weldstone GmbH, Germany	489
437 -	- The shipbuilding industry in the Polish economy as an important element of the development of a modern machinery industry,	
	including foundry	
	M. Bączkowski, Stocznia Szczecińska Sp. z o.o, Poland	491
	Technology:	
2 –	New induction wireless manufacturing efficient process for energy intensive industries (NIWE)	
	A. Meléndez, Tecnalia Research & Innovation, Spain	495
3 –	Optimization and control of modern ladle pouring process	
	T. Voss, Otto Junker GmbH, Germany	497
8 –	The green sand foundry of tomorrow	
	P. Larsen, DISA Industries, Denmark	499

25 –	Ten years of industrial experience with low-emission additives for molding sand	
	T. Engelhardt, Clariant Produkte GmbH, Germany	501
29 –	Development of molten metal transport support system with an overhead crane	F02
26	A. Kaneshige, National Institute of Technology, Mechanical Engineering Department, Toyota College	503
36 -	Modern green sand moulding for everyone	505
40	P. Larsen, DISA Industries, Denmark	303
45-	Focus on development of quality high pressure die casting process M. Rosso, Politecnico Di Torino, Department of Applied Science And Technology, , Italy	507
82 –	Benefits of using ProCast simulation software to solve casting defects in Odlewnie Polskie S.A.	307
02	V. Kolda, Mecas ESI, Czech Republic	509
85 –	Intelligent manual and automated MicroParticle dry ice cleaning systems for the Foundry–Die Casting Industry	303
05	D. Juchmes, Cold Jet BVBA, Belgium	511
124 -	- New investigation of material—dependent—control of flowability in green sand molding process	
	J. Bast, TU Bergakademie Freiberg, Faculty of Mechanical Engineering, Germany	513
128 -	- "Towards vision zero" in the automotive industry – foundry challenges and opportunities	
	M. Ata, Continental Teves AG & Co. oHG, Germany	515
135 -	- Flexible manufacturing through in–house conversion of shell core making machine to cold box process making machine with	easy
	reversibility	-
	D. A Pratap Singh, Maruti Suzuki India Ltd, India	517
140 -	- Seeing through the Cloud of Industry 4.0	
	M. Lewis, Omega Sinto Foundry Machinery Ltd., United Kingdom	519
142 -	- Wireless measurement of mold temperature during centrifugal casting and heat transfer analysis	
	N. Iwata, JFE Steel Corporation, Japan	521
149 -	- Rapid determination of nodularity index in ductile cast iron production	
	P. Larrañaga, IK4 AZTERLAN, Spain	523
158 -	- PUR Cold–Box Systems – Past–Present–Future	
	P. Gröning, Hüttenes–Albertus Chemische Werke GmbH, Germany	525
159 -	- Optimization and automation of chemical control of alloys in Smart Foundry 4.0	
	A. Montenegro, Amv Soluciones, R&D&I, Spain	527
162 -	- Cordis® Process – the next generation	
	K. Löechte, Hüttenes–Albertus Chemische Werke GmbH	529
167 -	The role of recycled ceramic material obtained from the ceramic layered moulds used in the investment casting	
400	A. Soroczyński, Warsaw University of Technology, Department of Plastic Forming and Foundry Engineering, Poland	531
182 -	- Environmental and application method improvements – an R&D approach	
100	A. Burrows, Hüttenes–Albertus UK Ltd, United Kingdom	533
189 -	- Ceramic-carbon filters for molten metal filtration	F 2 F
101	M. Asłanowicz, A. Ościłowski, B. Lipowska, Z. Robak, R. Muzyka, P. Kowalski, K. Wańczyk	535
191 -	- Refractory coatings in centrifugal process: the change from release agent to moulding material K. Seeger, Hüttenes–Albertus Chemiche Werke GmbH, Germany	537
101	- Using of 3D printed permanent patterns for mass production of castings on "green sand" molding lines	337
194 -	M. Horacek, Brno University of Technology, Faculty of Mechanical Engineering, Czech Republic	539
203-	- Perspective on use of green sand additives as essential contaminants	333
203	D. Chowdhary, MPM Private Limited, India	541
210-	- Combining mold milling and 3D sand printing to optimize casting design	313
	L. Dunlay, , University of Northern Iowa, Metal Casting Center, United States	543
226 -	- Casting simulation: an aid to green manufacturing	
	A. Bhat, SoftCAST Technologies Pvt Ltd, India	545
228 -	Optimization of heavy steel casting manufacturing technology	
	R. Dojka, Odlewnia Staliwa Łabędy, Poland	547
232 -	Directional solidification casting technology of heavy—duty gas turbine blade with LMC process	
	L. Xiaofu, Shenyang Research Institute of Foundry, New Technology R&D Center, China	549
241 -	Influence of quality of charge materials on chemical composition, structure and properties of copper products for electrical app	ication
	B. Juszczyk, Institute of Non–Ferrous Metals, Metal Processing Department, Poland	551
242 -	- The use of Multivariate Control Charts to assess the quality of aluminum alloys melted in crucible furnaces	
	M. Brzeziński, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	553
257 -	- Hybrid patternless forming method and equipment of multi–material sand mold	
	Z. Shan, China Academy of Machinery Science & Technology Group Co., Ltd., China	555

261 -	- Optimum design of foam residue traps to manufacture large–sized castings for full mold casting	
	Y. Takagi, Mie University, Department of Mechanical Engineering, Graduate School of Engineering, Japan	559
272 -	- Triad – a modern technology of non–cement concrete in cast iron foundry	
	B. Cygan, Silesian University of Technology, Department of Foundry Engineering, Poland	561
284 -	- Evaluation of Green Sand Premixes for Emission Characteristics	
	V. LaFay, S&T, IMERYS Metalcastings, USA	563
287 -	- Control volume simulation of the tilt casting process	
	D. Molnar, University of Miskolc, Hungary	565
292 -	- Shrinkage defect elimination supported by thermal analysis application for ductile iron knuckle production	
	P. Rodriguez, EDERTEK Technology Center of Fagor Ederlan Group, Spain	567
309 -	- Use of supplier quality index for assessing providers quality in aluminium castings	
	D. Dispinar, Istanbul University, Faculty of Engineering, Metallurgical and Meterials Department Turkey	569
353 -	- Evaluating a ceramic resin coated sand for aluminum and iron castings	
	S. Ramrattan, Western Michigan University, USA	571
366 -	- Easy-knock out moulding and core sand – the future for metal casting	
	A. Bobrowski, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	573
<i>375</i> -	- New & reclaimed chromite vs alumino–silicate refractory sand advantages and drawbacks	
	P. Diaz, Imerys Aluminates, France	575
382 -	- Hybrid resins: a great advantage for quality, ecology and costs	
	A. Mazzon, F.lli Mazzon S.p.A., Italy	577
396 -	- Heat recovery from compressed air station – foundry Volkswagen Poznań	
	T. Kamiński, Volkswagen Poznań Sp. z o. o., Poland	579
399 -	- Ductile iron and compacted graphite iron treatment with hybrid magnesium cored wire process	
	O. Bahuon, Foundry products, Affival sas, France	581
405 -	Development of additive manufacturing sand molding system aimed for mass production application	
	T. Okane, National Institute of Advanced Industrial Science and Technology, (AIST), Japan	583
421 -	- Modern permanent lining concepts for CC tundishes – theory and practice	
	P. Mirecki, Pasek Europe, Poland	585
425 -	- Automatic bottom pouring of iron alloys	
	O. Schmitz, Pour–Tech AB, Sweden	587
429 -	- LAC, S.R.O. – Producer of furnaces and dryers	
	P. Szekiełda, LAC, s.r.o., Czech Republic	589
440 -	- Industry 4.0 process control and traceability for the foundry industry	
	D. Gilson, SinterCast AB, Sweden	591
445 -	- The technology of continuous casting of aluminium alloy ingots	
	B. Augustyn, Institute of Non–Ferrous Metals, Light Metals Division, Poland	593
461 -	- VOX PATRIS – the biggest swinging bell in the world	
	P. Olszewski, Pracownia Ludwisarska Jana Felczyńskiego, Poland	595
462 -	- Development of the electric vehicles market by 2030 in Germany, Europe, US and China	
	C. Kuhlgatz, Hüttenes–Albertus Chemische Werke GmbH, Germany	597
	Digitalization:	
133 -	- Experiences with helix atline computer tomography(CT) and VGinLine at Volkswagen Foundry Hanover	
100	F. Hansen, Volkswagen Foundry Hanover, Germany	601
161 -	- Data analytics: the next dimension in molding sand control	301
	D. Chowdhary, MPM Infosoft Private Ltd., India	603
347 -	- Digital transformation to Foundry 4.0	000
•	N. Gramegna, EnginSoft S.p.A., Manufacturing Business Unit, Italy	605
356 -	- SINFONET: Smart & Innovative Foundry Network	000
	F. Bonollo, Padova University, Department of Engineering and Management (DTG), Italy	607
401 -	- Simulation driven design for castings with effective control of manufacturing constraints	
	K. Afsardis, Altair, Greece	609
	Ecology:	
9 –	Pro-ecological die-casting foundry	
	K. Wrzała, Odlewnia SILUM Sp. z o.o., Poland	613
13 –	Spent foundry sand valorization in construction sector through the validation of high–performance applications	
	E. Garitaonandia, IK4–AZTERLAN, Environment and Sustainability, Spain	615

31 –	Database of materials for the evaluation of the impact of harmful substances in metallurgical processes	
	A. Bydałek, University of Zielona Góra, Faculty of Mechanical Engineering, Poland	617
40 –	$Process\ performance\ and\ environmental\ impact\ of\ the\ CaO-Al_2O_3\ slag\ system\ as\ alternative\ to\ calcium\ carbide\ for\ desulfurization$	
	of nodular cast iron	
	R. Lencina, Kerneos Aluminate Technologies, France	619
123 -	Absorption—Biochemical Units (ABChU) for ventilating air purification in foundry	
	Y. Shapavalau, Gazoochistka Engineering LLC, Republic of Belarus	621
177 -	- Fata Aluminum inorganic sand regeneration process	
	P. Bocca, Fata Aluminum, Italy	623
230 -	– Economic solutions for avoiding emissions in foundries	
	A. Cavotta, Xpuris GmbH, Germany	625
231 -	- Increase of output – retrofits – modifications	
	F. Schaefer, Heinrich Wagner Sinto Maschinenfabrik GmbH, Germany	627
368	– Automation of sand cores production – Foundry Volkswagen Poznań	
	T. Kamiński, Volkswagen Poznań Sp. z o. o., Poland	629
	Management:	
<i>73</i> –	Innovation in knowledge transfer from academia to the foundry industry – an advanced case	
	J. T. Svidró, Jönköping University School of Engineering, Department of Materials and Manufacturing Sweden	633
122 -	– A strategy road map towards world class safety through innovative proactive and unique daily routine activities to achieve ze	ro
	injury in Indian Foundry Industry	
	D. A. Pratap Singh, Maruti Suzuki India Ltd, India	635
238 -	– Life long education of foundry employees – a step forward	
	C. Gustavsson, Swerea SWECAST, Sweden	637
393 -	– Partnership of industry and knowledge center for a sustainable foundry industry	
	L. Sechi, Clariant SE, France	639
403 -	– Polish engineer with regard to changes caused by Industry 4.0	
	K. Liszka, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland	641