International RILEM Conference on Materials, Systems and Structures in Civil Engineering 2016

Frost Action in Concrete

RILEM Proceedings Pro 114

Lyngby, Denmark 22-24 August 2016

Editors:

Marianne Tange Hasholt Katja Fridh R. Doug Hooton

ISBN: 978-1-5108-8578-3

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright[©] (2016) by RILEM Publications All rights reserved.

Printed by Curran Associates, Inc. (2019)

For permission requests, please contact RILEM Publications at the address below.

RILEM Publications 4 avenue du Recteur Poincare 75016 Paris France

Phone: +33 1 42 24 64 46 Fax: +33 9 70 29 51 20

dg@rilem.net

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2633 Email: curran@proceedings.com Web: www.proceedings.com International RILEM Conference on Materials, Systems and Structures in Civil Engineering Conference segment on Frost Action in Concrete 22-23 August 2016, Technical University of Denmark, Lyngby, Denmark

Contents

		Page
	Preface	IX
	Marianne Tange Hasholt, Katja Fridh and R. Doug Hooton	
	Welcome Ole Mejlhede Jensen	Х
1.	The use of image analysis to quantify the orientation of cracks in concrete Einar N. Andreassen, Andreas B. Elbrønd and Marianne T. Hasholt	1
2.	Non-destructive evaluation of concrete subjected to freeze-thaw cycles Sofía Aparicio, Javier Ranz, Margarita G. Hernández and José Javier Anaya Velayos	11
3.	Frost resistance of concrete – Experience from long term field exposure Dimitrios Boubitsas, Peter Utgenannt, Luping Tang and Elisabeth Helsing	21
4.	The influence of the freeze-thaw loading cycle on the ingress of chlorides in concrete	31
	Miguel Ferreira, Markku Leivo, Hannele Kuosa and David Lange	
5.	Frost damage of concrete subject to confinement Marianne Tange Hasholt	41
6.	The salt-frost resistance of concrete with supplementary cementitious materials (SCM) Elisabeth Helsing and Peter Utgenannt	51
7.	Foam index measurements on mixes of air entraining agents, super plasticizers and fly ash-cement-filler blends	61
	Lori Tunstall and George W. Scherer	
8.	Freezing induced stresses in concrete-steel composite beams and effect of air voids	71
9.	Correlation between characteristic distances of air voids as point processes and conventional spacing factors in mortars Hidefumi Koto, Takuma Murotani and Shin-Ichi Igarashi	81
10.	The influence of carbonation and age on salt frost scaling of concrete with mineral additions Ingemar Löfgren, Oskar Esping and Anders Lindvall	91
11.	Modeling freezing of cementitious materials by considering process kinetics Francesco Pesavento and Dariusz Gawin	101
12.	Experimental studies on frost-induced deterioration of concrete in Swedish hydroelectric structures	111
13.	Martin Rosenqvist, Katja Fridh and Manouchehr Hassanzadeh The influence of air void characteristics on freeze-thaw-salt resistance of pavement concretes Aljoša Šajna and Lado Bras	121

International RILEM Conference on Materials, Systems and Structures in Civil Engineering
Conference segment on Frost Action in Concrete
22-23 August 2016, Technical University of Denmark, Lyngby, Denmark

14.	Identification of optimal condition for the de-icing salt scaling resistance of concrete	131
	Samindi Samarakoon, Samdar Kakay, Pål Lieske Tefre, Mats Buøen and Vikrant Kaushal	
15.	Towards an adequate deicing salt scaling resistance of high-volume fly ash (HVFA) concrete and concrete with superabsorbent polymers (SAPs) Didier Snoeck, Philip Van den Heede and Nele De Belie	141
16.	Freeze-Thaw-Attack on concrete structures – laboratory tests, monitoring, practical experience Frank Spörel	151
17.	Methodology to analyse the salt frost scaling mechanism(s) in concrete with different binders Martin Strand and Katja Fridh	161
18.	Mitigation of deicer damage in concrete pavements caused by calcium oxychloride formation – Use of ground lightweight aggregates Prannoy Suraneni, Naomi Salgado, Hunter Carolan, Chang Li, Vahid Jafari Azad, O. Burkan Isgor, Jason H. Ideker and Jason Weiss	171
19.	Deicer-salt scaling of concrete containing fly ash Michael Thomas and Huang Yi	181
20.	Linking surfactant molecular structure to mortar frost protection Lori E. Tunstall, George W. Scherer and Robert K. Prud'Homme	191
21.	Percolation in cementitious materials under freeze-thaw cycles investigated by means of electrical resistivity Zhendi Wang, Ling Wang and Yan Yao	201
22.	Application of air entrained concrete in tollways constructions in Liaoning Province of China Wencui Yang, Xiaoping Cai, Yong Ge and Jie Yuan	211
23.	Influence of ductility and microcracking on the frost durability of cementitious composites with high volumes of fly ash Gürkan Yıldırım, Oğuzhan Öztürk, Mustafa Şahmaran and Mohamed Lachemi	221
24.	Water penetration into frost damaged concrete Peng Zhang, Yuan Cong, Wanyu Zhao, Wenchao Geng, Zhengzheng Dai and Tiejun Zhao	231
	Author Index	239