Medical Imaging 2019

Image Perception, Observer Performance, and Technology Assessment

Robert M. Nishikawa Frank W. Samuelson Editors

20–21 February 2019 San Diego, California, United States

Sponsored by SPIE

Cooperating Organizations

AAPM—American Association of Physicists in Medicine (United States)
IFCARS—International Foundation for Computer Assisted Radiology and Surgery (Germany)
MIPS—Medical Image Perception Society (United States)
SIIM—Society for Imaging Informatics in Medicine (United States)
WMIS—World Molecular Imaging Society

Published by SPIE

Volume 10952

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

Author(s), "Title of Paper," in Medical Imaging 2019: Image Perception, Observer Performance, and Technology Assessment, edited by Robert M. Nishikawa, Frank W. Samuelson, Proceedings of SPIE Vol. 10952 (SPIE, Bellingham, WA, 2019) Seven-digit Article CID Number.

ISSN: 1605-7422

ISSN: 2410-9045 (electronic)

ISBN: 9781510625518

ISBN: 9781510625525 (electronic)

Published by

SPIE

P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time) Fax +1 360 647 1445

SPIE.org

Copyright © 2019, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is \$18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 1605-7422/19/\$18.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.

Contents

∨ii ix	Authors Conference Committee
SESSION 1	IMAGE PERCEPTION
10952 03	Does the strength of the gist signal predict the difficulty of breast cancer detection in usual presentation and reporting mechanisms? [10952-2]
10952 04	Oculomotor behavior of radiologists reading digital breast tomosynthesis (DBT) [10952-3]
SESSION 2	MODEL OBSERVERS I
10952 05	Automatic strategy for CHO channel reduction in x-ray angiography systems [10952-4]
10952 06	Template models for forced-localization tasks [10952-5]
10952 07	Autoencoder embedding of task-specific information [10952-6]
10952 08	Learning the Hotelling observer for SKE detection tasks by use of supervised learning methods [10952-7]
10952 09	Learning the ideal observer for joint detection and localization tasks by use of convolutional neural networks [10952-8]
SESSION 3	MODEL OBSERVERS II
10952 0A	Laguerre-Gauss and sparse difference-of-Gaussians observer models for signal detection using constrained reconstruction in magnetic resonance imaging [10952-9]
10952 OB	Tests of projection and reconstruction domain equivalence for a feature-driven model observer [10952-10]
10952 0C	New difference of Gaussian channel-sets for the channelized Hotelling observer? [10952-11]
10952 0D	A foveated channelized Hotelling search model predicts dissociations in human performance in 2D and 3D images [10952-12]
10952 OE	Using transfer learning for a deep learning model observer [10952-13]

SESSION 4	TECHNOLOGY IMPACT AND ASSESSMENT
10952 OF	Estimating latent reader-performance variability using the Obuchowski-Rockette method [10952-14]
10952 0G	Adaptive sample size re-estimation in MRMC studies [10952-15]
10952 0H	Radiation-therapy-induced erythema: comparison of spectroscopic diffuse reflectance measurements and visual assessment [10952-16]
10952 OI	Impact of patient photos on detection accuracy, decision confidence, and eye-tracking parameters in chest and abdomen images with tubes and lines [10952-17]
10952 OJ	Is there a safety-net effect with computer-aided detection (CAD)? [10952-18]
SESSION 5	DEEP LEARNING APPLICATIONS
10952 OK	Correlation between a deep-learning-based model observer and human observer for a realistic lung nodule localization task in chest CT [10952-19]
10952 OL	Implementation of an ideal observer model using convolutional neural network for breast CT images [10952-20]
10952 0M	Learning stochastic object model from noisy imaging measurements using AmbientGANs [10952-21]
10952 ON	BI-RADS density categorization using deep neural networks [10952-22]
10952 0O	Mammographic breast density classification using a deep neural network: assessment based on inter-observer variability [10952-23]
SESSION 6	OBSERVER PERFORMANCE
10952 OP	Development of methods to evaluate probability of reviewer's assessment bias in Blinded Independent Central Review (BICR) imaging studies [10952-24]
10952 OQ	Reader disagreement index: a better measure of overall review quality monitoring in an oncology trial compared to adjudication rate [10952-25]
10952 OR	A 2-AFC study to validate artificially inserted microcalcification clusters in digital mammography [10952-26]
10952 OT	Blinding of the second reader in mammography screening: impact on behaviour and cancer detection [10952-29]
10952 OP 10952 OQ 10952 OR	Development of methods to evaluate probability of reviewer's assessment bias in Blinded Independent Central Review (BICR) imaging studies [10952-24] Reader disagreement index: a better measure of overall review quality monitoring in an oncology trial compared to adjudication rate [10952-25] A 2-AFC study to validate artificially inserted microcalcification clusters in digital mammography [10952-26] Blinding of the second reader in mammography screening: impact on behaviour and cancer

SESSION 7	OBSERVER PERFORMANCE IN BREAST IMAGING
10952 OU	An observer study to assess the detection of calcification clusters using 2D mammography, digital breast tomosynthesis, and synthetic 2D imaging [10952-30]
10952 0V	2D single-slice vs. 3D viewing of simulated tomosynthesis images of a small-scale breast tissue model [10952-31]
10952 OW	Changes in breast density [10952-32]
10952 0X	Assessment of a quantitative mammographic imaging marker for breast cancer risk prediction [10952-33]
	POSTER SESSION
10952 0Y	Comparing senior residents performance to radiologists in lung cancer detection [10952-28]
10952 OZ	Data transformations for variance stabilization in the statistical assessment of quantitative imaging biomarkers [10952-34]
10952 10	A case study regarding clinical performance evaluation method of medical device software for approval [10952-35]
10952 11	In-vitro and in-vivo comparison of radiation dose estimates between state-of-the-art interventional fluoroscopy systems [10952-36]
10952 12	Prostate Imaging Self-assessment and Mentoring (PRISM): a prototype self-assessment scheme [10952-37]
10952 14	Deep residual-network-based quality assessment for SD-OCT retinal images: preliminary study [10952-39]
10952 15	A statistical analysis of oral tagging in CT colonography and its impact on flat polyp detection and characterization [10952-40]
10952 16	Missed cancer and visual search of mammograms: what feature-based machine-learning can tell us that deep-convolution learning cannot (Cum Laude Poster Award) [10952-41]