2018 Smart Grid Conference (SGC 2018)

Sanandaj, Iran 28 – 29 November 2018

IEEE Catalog Number: CFP18SGB-POD **ISBN:**

978-1-7281-1137-7

Copyright © 2018 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

CFP18SGB-POD
978-1-7281-1137-7
978-1-7281-1138-4
2572-6935

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

TABLE OF CONTENTS

Full Papers

	Paper Title	PP.
1.	D2D-aided Optimal Utilization of RenewableEnergies for Green Powered	1-6
	Base stations	
2.	Smart Energy Harvesting for Internet of Things	7-11
3.	Deterministic Mean Field Game for EnergyManagement in a Utility with	12-17
	Many Users	
4.	Survey of DoS Attacks on LTE infrastructure used inAMI System and	18-23
	Countermeasures	
5.	Smart Image-Processing based Energy Harvesting for Green Internet of	24-28
	Things	
6.	A Novel High Efficiency Interleaved Flyback Inverterfor Smart Home	29-35
	Applications	
7.	Smart Energy management of Thermal Power Plantsby Considering Liquid	36-41
	Fuel Dispatching System Modeling	
8.	Co-optimization of Electricity and Natural GasNetworks Considering AC	42-47
	Constraints and Natural Gas Storage	
10.	Consideration of Hourly Flexible Ramping Productsin Stochastic Day-Ahead	48-53
	Scheduling of Integrated Wind and Storage Systems	
11.	Multi-Objective Scheduling of CHP-Based Microgridswith Cooperation of	54-63
	Thermal and Electrical StorageUnits in Restructured Environment	
12.	Green Power Island, a Blue Battery Concept for EnergyManagement of High	64-72
	Penetration of Renewable EnergySources with Techno-Economic and	
	EnvironmentalConsiderations	
13.	Stability Analysis of Islanded Microgrid with EVs	73-77
14.	A Model for Generation Expansion Planning in PowerSystems Considering	78-82
	Emission Costs	
15.	A Comprehensive Financial Analysis for Dual-AxisSun Tracking System in	83-88
	Iran Photovoltaic Panels	
16.	Bilateral negotiation of energy Contracts in Microgrids	89-94
17.	Maximization of Wind Energy Utilization and Flicker Propagation Mitigation	95-100
	Using SC and STATCOM	
18.	Optimal Energy Scheduling for a Microgrid Encompassing DRRs and Energy	101-110
	Hub Paradigm Subject to Alleviate Emission and Operational Costs	
19.	Allocation and Sizing of Energy Storage System Considering Wind	111-116
	Uncertainty: An Approach Based onStochastic SCUC	
20.	Scheduling of Smart Micro Grid Considering Reserveand Demand Side	117-124
	Management	
21.	Demand-Side Energy Management in an Administrative Building by	125-130
	Considering GenerationOptimization	

22.	Demand Side Management of a Stand-alone Hybrid Power Grid by Using	131-136
	Fuzzy Type-2 Logic Control	
23.	Optimal Energy Dispatch of Smart Home Equipped with PV, WT, and ESS	137-143
	Using Load Control under RTP	
24.	Travel behavior and System Objectives Uncertainties In Electric Vehicle	144-149
	Optimal Charging	
25.	Potential Impacts of Plug-in Electric Vehicles on Tehran Province	150-155
	Distribution Company: Technical Analysis	
26.	Electromagnetic Analysis for DD Pad Magnetic structure of a Wireless	156-161
	Power Transfer (WPT) for Electrical Vehicles	
27.	A Two Stage Model for Optimum Allocation of Electric Vehicle Parking	162-166
	Lots in Smart Grids	
28.	A Phasor-Based Framework for Real-Time Identification of Power Systems	167-174
	Islanding through Decision-Tree Algorithm	
29.	Multi-objective Optimal Design and Operation of Autonomous Hybrid	175-180
	Energy System Considering Uncertainties	
30.	Price and Reliability-Based Planning of Hybrid Power System in Off-Grid	181-187
	Mode	
31.	Implementation of energy management of a microgrid using HMAS	188-193
32.	Model Predictive and SDRE Control of DC Microgrids with Constant Power	194-199
	Loads: A Comparative Study	
33.	A New Control Method Using Instantaneous Impedance Of Inverter To	200-205
	Improve Dynamic Response For Inverter Based Islanded Microgrid	
34.	Coordinated Droop Control of Battery and Flywheel ESSs in Isolated	206-210
	Microgrid Considering Their SOC	
35.	A New Load Frequency Control Strategy for an AC Micro-grid: PSO-based	211-217
	Fuzzy Logic Controlling Approach	
36.	Application of Kharitonov's Theorem in Robust Stability of Voltage and	218-223
	Frequency of an Islanded Microgrid	
37.	Dynamic Performance Improvement of DC Microgrids Using Virtual	224-229
	Impedance	
38.	Mixed H2 / H ∞ State-Feedback Control for Islanded DC Microgrids: An LMI	230-235
	Based Approach	
39.	Optimal droop parameter adjustments for an islanded micro-grid considering	236-241
	unexpected perturbation in load demand In the presence of energy storages	
40.	Optimization of Day Ahead Distributed Intelligent Decision-Making for a	242-247
	Multi-Microgrid System	
41.	Planning Framework for BESSs in Microgrids (MGs) Using Linearized AC	248-254
	Power Flow Approach	
42.	Kron Reduction and L2-Stability for Plug-and-Play Frequency Control of	255-260
	Microgrids	
43.	A New Hybridization Concept for Distributed Generation and Microgrids	261-266
L	under Harmonic and Nonlinear Loads	
44.	Intrusion Detection on Critical Smart Grid Infrastructure	267-272
45.	A Generalized Representation of VSC-HVDC Based AC/DC Microgrids for	273-277
1	Power Flow Studies	

46.	A Novel DC-DC Single-inductor Double-Input Bidirectional Converter for	278-283
	Hybrid Energy Storage System in DC-Micro Grid	
47.	Impedance-Based Stability Analysis of Different Current Control Categories	284-289
	of Grid-Connected Inverters	
48.	Design and Implementation of a Simple Diesel Generator Emulator for	290-295
	Frequency Analysis of Laboratory-Scale Microgrids	
49.	Short-Term Co-Optimization of Multi-Chiller Plants and Ice Storage System	296-301
50.	A novel Optimal PMU Location Method in Smart Grids	302-306
51.	Generation Expansion Planning Considering Investment Dynamic of Market	307-312
	Participants Using Multi-agent System	
52.	Reliability-Oriented Optimal Scheduling of Self- Healing in Multi-	313-318
	Microgrids	
53.	State Estimation in Unbalanced Three Phase Distribution Network through	319-324
	Accurate Modelling of Network Elements	
54.	Hybrid Energy Storage for DC Microgrid Performance Improvement Under	325-330
	Nonlinear and Pulsed Load Conditions	
55.	Illumination Control of Smart Indoor Lighting Systems Consists of Multiple	331-334
	Zones	
56.	ISO/EPC Addressing Methods to Support Supply Chain in the Internet of	335-340
	Things	
57.	Power Quality Enhancement in Distribution Systems Using Feeder	341-346
	Reconfiguration	
58.	The Economic Practicality Of Exploitation CHP(Combined Heat and Power)	347-351
	To Scale Back Prices In Instance Home Appliance Manufacturing Company	
59.	Evaluating Grid Harmonics Effect on Induction Motor Using Reduced	352-356
	Thermal Model	
60.	Control of Multi-Zone Power System Using High-Order Sliding Mode	357-363
61.	WAMS Based Intelligent Under Frequency Load Shedding Considering	364-368
	Online Disturbance Estimation	
62.	WAMS Based Online Estimation of Total Inertia Constant and Damping	369-373
	Coefficient for Future Smart Grid Systems	
63.	A Novel Unit Protection Scheme for Direct Current Power Systems	374-379
64.	Optimal Setting of Under Frequency Load Shedding Relays in Low Inertia	380-385
	Networks	
65.	Load Frequency Control with Considering Impact of Wind Turbine Using a	386-391
	Fractional PID Controller	
66.	Adaptive Power System Stabilizer Design For Interconnected Power Systems	392-397
67.	WAMS based Under Frequency Load Shedding Considering Minimum	398-402
	Frequency Predicted and Extrapolated Disturbance Magnitude	402 400
68.	Optimal Placement of Phasor Measurement Units for Observability of	403-408
	Mazandaran Iransmission and Sub- Iransmission Networks	400 410
69.	Serviceability Optimization of the Next Generation Wind Turbines Using	409-412
	Internet of Things Platform	