PROCEEDINGS OF SPIE

Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVII

Din Ping Tsai Takuo Tanaka Editors

11–15 August 2019 San Diego, California, United States

Sponsored and Published by SPIF

Volume 11082

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

Author(s), "Title of Paper," in *Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVII*, edited by Din Ping Tsai, Takuo Tanaka, Proceedings of SPIE Vol. 11082 (SPIE, Bellingham, WA, 2019) Seven-digit Article CID Number.

ISSN: 0277-786X

ISSN: 1996-756X (electronic)

ISBN: 9781510628571

ISBN: 9781510628588 (electronic)

Published by

SPIF

P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445 SPIF ora

Copyright © 2019, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is \$21.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/19/\$21.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.

Contents

Vii	Authors
ix	Conference Committee
xiii	Introduction
	PLASMONIC LASER
11082 OL	Plasmonic nanolasers based on graphene-insulator-metal platform (Invited Paper) [11082-20]
	PLASMONIC MATERIALS AND NANOSTRUCTURES
11082 0P	Rainbow light trapping in ultrathin plasmonic nanogratings [11082-24]
	THERMAL PLASMONICS
11082 OS	Thermoplasmonics for investigation of microbubble dynamics in degassed water (Invited Paper) [11082-27]
	NONLINEAR
11082 OW	Amplifying conversion efficiencies of SP-enhanced SHG from Ag surface with nonlinear optical polymer films [11082-31]
	PLASMONIC SENSING I
11082 15	In vivo detection of microRNA within plants using plasmonic nanosensors [11082-43]
	PLASMONIC SENSING II
11082 1D	Plasmonic sensing of hydrogen in Pd nano-hole arrays [11082-50]

	FUNDAMENTALS OF PLASMONICS III
11082 1H	Investigating electromagnetic field enhancements from gold nanostructured arrays for plasmon enhanced fluorescence [11082-54]
	PLASMONIC APPLICATIONS II
11082 1K	Self-organized metasurfaces enabling plasmon hybridization [11082-58]
	POSTERS-WEDNESDAY
11082 1P	Surface plasmon-polariton waves guided by reciprocal, uniaxially chiral, bianisotropic material [11082-63]
11082 1S	Enhancement of optical near field by bowtie nanoantenna with V-structured hole [11082-67]
11082 1T	Semiconductor-based nanostructures for spectral filtering [11082-68]
11082 1U	Local field enhancement by using composite grating with nanogaps [11082-70]
11082 1V	Development of color 8K photo printing with plasmonic pixels [11082-71]
11082 1X	Plasmonic-induced transparency based on MIM waveguide achieved by the structure including a rectangular ring and a rectangular strip [11082-73]
11082 1Y	Tunable dual-band metamaterial absorber based on cross-shaped graphene [11082-74]
11082 24	Embedded surface plasmon resonant disc arrays for improved MWIR sensitivity and increased operating temperature of PbSe photoconductive detectors [11082-81]
11082 28	Multiple annealing based photonic tunability for enhanced photo-response of AuGe nanoparticles [11082-85]
11082 29	Design of arrow shaped nanoantenna for electric field enhancement [11082-87]
11082 2A	Chemical analysis of air pollutant particulate matters based on surface enhanced Raman spectroscopy (SERS) [11082-88]
11082 2C	Narrowband polarization-dependent fractal based plasmonic absorbers [11082-90]

11082 2H	Effect of silver nanoparticles on the luminescence spectral characteristics of rare-earth ion doped sodium borate glasses [11082-96]
11082 21	The influence of the fabrication developing time on plasmonic bowtie nanoantenna metastructures [11082-97]
11082 2L	Inverse molecular sentinel-integrated fiber sensor for direct detection of miRNA targets [11082-100]
11082 2N	Analysis of graphene and sulfide coated surface plasmon resonance biosensors [11082-102]
11082 2W	Synthesis, characterization, and computational modeling of polyelectrolyte-coated plasmonic gold nanorods for photothermal heating studies [11082-113]