PROCEEDINGS OF SPIE

Techniques and Instrumentation for Detection of Exoplanets IX

Stuart B. Shaklan Editor

12–15 August 2019 San Diego, California, United States

Sponsored and Published by SPIE

Volume 11117

Proceedings of SPIE 0277-786X, V. 11117

SPIE is an international society advancing an interdisciplinary approach to the science and application of light.

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

Author(s), "Title of Paper," in Techniques and Instrumentation for Detection of Exoplanets IX, edited by Stuart B. Shaklan, Proceedings of SPIE Vol. 11117 (SPIE, Bellingham, WA, 2019) Seven-digit Article CID Number.

ISSN: 0277-786X ISSN: 1996-756X (electronic)

ISBN: 9781510629271 ISBN: 9781510629288 (electronic)

Published by **SPIE** P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445 SPIE.org Copyright © 2019, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is \$21.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/19/\$21.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.

Contents

- vii Authors
- ix Conference Committee

HABEX AND LUVOIR

- 11117 01 Standard exoplanet yield evaluation for the LUVOIR and HabEx concept studies [11117-1]
- 11117 02 The LUVOIR Extreme Coronagraph for Living Planetary Systems (ECLIPS) II. Performance evaluation, aberration sensitivity analysis and exoplanet detection simulations [11117-2]
- 11117 03 The LUVOIR Extreme Coronagraph for Living Planetary Systems (ECLIPS) I: searching and characterizing exoplanetary gems [11117-3]
- 11117 04 Habitable Exoplanet Observatory (HabEx) telescope and optical instruments [11117-4]
- 11117 05 Numerical modeling of the Habex coronagraph [11117-5]

FLIGHT SYSTEMS

11117 07 The PICTURE-C exoplanetary direct imaging balloon mission: first flight preparation [11117-7]

DEFORMABLE MIRRORS

11117 09 High-contrast imaging stability using MEMS deformable mirror [11117-10]

WFIRST CORONAGRAPH I

- 11117 OC The WFIRST coronagraph instrument phase B optical design [11117-13]
- **Development of the WFIRST CGI integral field spectrograph** [11117-14]
- 11117 OF
 Directly constraining low-order aberration sensitivities in the WFIRST coronagraph design

 [11117-16]

11117 OG Optimization of Lyot coronagraph focal plane masks for improved low-order wavefront sensing [11117-17]

WFIRST CORONAGRAPH II

- 11117 OH
 WFIRST Phase B HLC occulter mask baselining and testbed WFC performance validation

 [11117-18]
- 11117 01WFIRST low order wavefront sensing and control (LOWFS/C) performance on line-of-sight
disturbances from multiple reaction wheels [11117-19]
- 11117 OK Simulating the effects of exozodiacal dust in WFIRST CGI observations [11117-21]

STARSHADES I

11117 OL	Demonstration of 1e-10 contrast at the inner working angle of a starshade in broadband light and at a flight-like Fresnel number [11117-22]
11117 OM	Rayleigh scattering in the Princeton starshade testbed [11117-23]
11117 ON	Hardware demonstration of starshade formation flying sensing and control algorithms [11117-24]
11117 OP	Advances in starshade technology readiness for an exoplanet characterizing science mission in the 2020's [11117-26]
	STARSHADES II
11117 0Q	STARSHADES II Advancements in precision edges for a starshade external occulter [11117-27]
11117 OQ 11117 OS	STARSHADES II Advancements in precision edges for a starshade external occulter [11117-27] Mapping the observable sky for a remote occulter working with ground-based telescopes [11117-30]
11117 OQ 11117 OS	STARSHADES II Advancements in precision edges for a starshade external occulter [11117-27] Mapping the observable sky for a remote occulter working with ground-based telescopes [11117-30]
11117 OQ 11117 OS	STARSHADES II Advancements in precision edges for a starshade external occulter [11117-27] Mapping the observable sky for a remote occulter working with ground-based telescopes [11117-30] GROUND-BASED OBSERVATIONS

- 11117 0U Status of the Keck Planet Imager and Characterizer phase II development [11117-32]
- 11117 0V The vortex fiber nulling mode of the Keck Planet Imager and Characterizer (KPIC) [11117-33]
- 111170W Demonstrating predictive wavefront control with the Keck II near-infrared pyramid wavefront sensor [11117-34]

11117 0X Performance and early science with the Subaru Coronagraphic Extreme Adaptive Optics project [11117-35]

- 11117 OYDemonstration of multi-star wavefront control using SCExAO [11117-36]
- 11117 0Z EXOhSPEC folded design optimization and performance estimation [11117-37]

CORONAGRAPH DESIGN AND MODELING I

- 1111710 Effects and mitigation of polarization aberrations in LUVOIR coronagraph [11117-38]
- 1111711 New concepts for calibrating non-common path aberrations in adaptive optics and coronagraph systems [11117-39]
- 1111712
 Phase-retrieval-based wavefront metrology for high-contrast coronography: 2. Reconstructions through a shaped pupil apodizer [11117-40]

CORONAGRAPH DESIGN AND MODELING II

- 1111716 Vortex fiber nulling for exoplanet observations: conceptual design, theoretical performance, and initial scientific yield predictions [11117-43]
- 1111717 Wavefront error tolerancing for direct imaging of exo-Earths with a large segmented telescope in space [11117-45]

CORONAGRAPH DESIGN AND MODELING III

- 1111718 Maintaining a dark hole in a high contrast coronagraph and the effects of speckles drift on contrast and post processing factor [11117-46]
- 11117 19 Demonstration of multi-star wavefront control for WFIRST, Habex, and LUVOIR [11117-47]
- A multi-object spectrograph using single-mode fibers with a coronagraph: progress towards laboratory results on the high-contrast testbed for segmented telescopes [11117-48]
- 111171C Minimum number of observations for exoplanet orbit determination [11117-50]
- 11117 1D Exploration of the dynamical phase space of stars with known planets [11117-51]

POSTER SESSION

11117 1F	Scalar vortex (coronagraph mask	design and	predicted	performance	[11117-61]	
----------	-----------------	------------------	------------	-----------	-------------	------------	--

- 111171HCritical characteristics of coronagraph masks influencing high contrast performance
[11117-63]
- Shaped pupil coronagraph design for Subaru high-contrast imaging with reduction of the inner working angle for earth-like planet detection [11117-64]
- 111171K Sequential generalized likelihood ratio test for planet detection with photon-counting mode [11117-67]
- 111171L Modeling the scatter of sunlight from starshade edges [11117-68]
- 111171M Highly replicable, low-cost, portable, general-purpose, high-resolution spectrometer with applications in stellar studies and exoplanet science [11117-69]
- 1111710
 First results of the 4-fiber upgrade of the high-resolution comb calibrated spectrograph FOCES

 [11117-71]
- 11117 1PSelf-nulling spectrograph for star glare rejection [11117-72]
- 111171Q The low-order wavefront control system for the PICTURE-C mission: deformable mirror antialiasing through temporal dithering [11117-73]
- 111171R
 Decoupling the image-plane and low-order wavefront sensors for the PICTURE-C coronagraph

 [11117-74]
- 11117 1S Status of commissioning stabilized infrared Fizeau interferometry with LBTI [11117-75]

LABORATORY DEMONSTRATIONS I

- 1111710 Design description and commissioning performance of a stable coronagraph technology development testbed for direct imaging of Earth-like exoplanets [11117-52]
- 11117 1V Testbed demonstration of high-contrast coronagraph imaging in search for Earth-like exoplanets [11117-53]
- 11117 1W The high-contrast spectroscopy testbed for segmented telescopes (HCST): new wavefront control demonstrations [11117-54]
- 111171X Novel implementation of a Kalman filter for speckle nulling with a fiber injection unit [11117-55]

LABORATORY DEMONSTRATIONS II

- 111117 1Z Design and modeling of the off-axis parabolic deformable mirror laboratory [11117-57]
- Developing linear dark-field control for exoplanet direct imaging in the laboratory and on ground-based telescopes [11117-65]