2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2020)

Seattle, Washington, USA 14-19 June 2020

Pages 1-746

IEEE Catalog Number: ISBN:

CFP2088A-POD 978-1-7281-9361-8

Copyright © 2020 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP2088A-POD

 ISBN (Print-On-Demand):
 978-1-7281-9361-8

 ISBN (Online):
 978-1-7281-9360-1

ISSN: 2160-7508

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) CVPRW 2020

Table of Contents

Organizers	
Area Chairs	
TCV: Fair, Data-Efficient and Trusted Computer Vision	
Face Recognition: Too Bias, or Not Too Bias? Joseph P. Robinson (Northeastern University), Gennady Livitz (ISM Connect), Yann Henon (ISM Connect), Can Qin (Northeastern University), Yun Fu (Northeastern University), and Samson Timoner (ISM Connect)	1
SAM: The Sensitivity of Attribution Methods to Hyperparameters	11
Revisiting the Evaluation of Uncertainty Estimation and Its Application to Explore Model Complexity-Uncertainty Trade-Off Yukun Ding (University of Notre Dame), Jinglan Liu (University of Notre Dame), Jinjun Xiong (IBM Thomas J. Watson Research Center), and Yiyu Shi (University of Notre Dame)	22
An Analytical Framework for Trusted Machine Learning and Computer Vision Running with Blockchain	
Identity Preserve Transform: Understand what Activity Classification Models have Learnt Jialing Lyu (University of Science and Technology of China), Weichao Qiu (Johns Hopkins University), and Alan Yuille (Johns Hopkins University)	39
Interpreting Interpretations: Organizing Attribution Methods by Criteria	48

Explaining Failure: Investigation of Surprise and Expectation in CNNs	56
Enhancing Facial Data Diversity with Style-Based Face Aging Markos Georgopoulos (Imperial College London, United Kingdom), James Oldfield (Computation-based Science and Technology Research Center, The Cyprus Institute), Mihalis A. Nicolaou (Computation-based Science and Technology Research Center, The Cyprus Institute), Yannis Panagakis (Imperial College London, United Kingdom; University of Athens, Greece), and Maja Pantic (Imperial College London, United Kingdom; Samsung AI Research Center, Cambridge, United Kingdom)	66
Imparting Fairness to Pre-Trained Biased Representations	75
Exploring Racial Bias Within Face Recognition via Per-Subject Adversarially-Enabled Data Augmentation Seyma Yucer (Durham University, Durham, UK), Samet Akçay (Durham University, Durham, UK; COSMONIO, Durham, UK), Noura Al-Moubayed (Durham University, Durham, UK), and Toby P. Breckon (Durham University, Durham, UK)	83
Minimizing Supervision in Multi-label Categorization	93
DNDNet: Reconfiguring CNN for Adversarial Robustness	. 103
Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks	. 111
On Privacy Preserving Anonymization of Finger-Selfies Aakarsh Malhotra (IIIT-Delhi, India), Saheb Chhabra (IIIT-Delhi, India), Mayank Vatsa (IIT Jodhpur, India), and Richa Singh (IIT Jodhpur, India)	. 120
Bias in Multimodal Al: Testbed for Fair Automatic Recruitment	. 129

AgriVision: Agriculture-Vision: Challenges & Opportunities for Computer Vision in Agriculture

Multi-view Self-Constructing Graph Convolutional Networks with Adaptive Class Weighting Loss for Semantic Segmentation Qinghui Liu (Norwegian Computing Center, Oslo, Norway; UiT Machine Learning Group, UiT the Arctic University of Norway, Tromsø, Norway), Michael C. Kampffmeyer (UiT Machine Learning Group, UiT the Arctic University of Norway, Tromsø, Norway), Robert Jenssen (Norwegian Computing Center, Oslo, Norway; UiT Machine Learning Group, UiT the Arctic University of Norway, Tromsø, Norway), and Arnt-Børre Salberg (Norwegian Computing Center, Oslo, Norway)	199
Reducing the Feature Divergence of RGB and Near-Infrared Images Using Switchable Normalization	206
The 1st Agriculture-Vision Challenge: Methods and Results Mang Tik Chiu (UIUC), Xingqian Xu (UIUC), Kai Wang (University of Oregon), Jennifer Hobbs (Intelinair), Naira Hovakimyan (Intelinair; UIUC), Thomas S. Huang (UIUC), Honghui Shi (University of Oregon; UIUC), Yunchao Wei (UIUC), Iong Huang (UIUC), Alexander Schwing (UIUC), Robert Brunner (UIUC), Ivan Dozier (Intelinair), Wyatt Dozier (Intelinair), Karen Ghandilyan (Intelinair), David Wilson (Intelinair), Hyunseong Park (Agency for Defense Development, South Korea; DGIST/), Sungho Kim (Agency for Defense Development, South Korea), Qinghui Liu (Norwegian Computing Center), Michael C. Kampffmeyer (UiT The Arctic University of Norway), Robert Jenssen (UiT The Arctic University of Norway), Robert Jenssen (UIT), Bingchen Zhao (Tongji University, China), Salberg (Norwegian Computing Center), Alexandre Barbosa (UIUC), Rodrigo Trevisan (UIUC), Bingchen Zhao (Tongji University, China), Siwei Yang (Tongji University, China), Yin Wang (Tongji University, China), Siwei Yang (Tongji University, China), Yin Wang (Tongji University, China), Hao Sheng (Stanford University), Xiao Chen (Stanford University), Andrew Ng (Stanford University), Van Thong Huynh (Chonnam National University, South Korea), Soo-Hyung Kim (Chonnam National University, South Korea), In-Seop Na (Chosun University, South Korea), Ujjwal Baid (SGGS Institute of Engineering and Technology, India), Prasad Dutande (SGGS Institute of Engineering and Technology, India), Bhakti Baheti (SGGS Institute of Engineering and Technology, India), Sanjay Talbar (SGGS Institute of Engineering and Technology, India), and Jianyu Tang (Tsinghua University, China)	212
Finding Berries: Segmentation and Counting of Cranberries Using Point Supervision and Shape Priors	219
Leaf Spot Attention Network for Apple Leaf Disease Identification	229

Visual 3D Reconstruction and Dynamic Simulation of Fruit Trees for Robotic Manipulation Francisco Yandun (Carnegie Mellon University), Abhisesh Silwal (Carnegie Mellon University), and George Kantor (Carnegie Mellon University)	238
Cross-Regional Oil Palm Tree Detection	248
Multi-stream CNN for Spatial Resource Allocation: A Crop Management Application	258
Effective Data Fusion with Generalized Vegetation Index: Evidence from Land Cover Segmentation in Agriculture	267
Deep Transfer Learning for Plant Center Localization	277
Segmentation and Detection From Organised 3D Point Clouds: A Case Study in Broccoli Head Detection	
Deep Learning Based Corn Kernel Classification	294

Improving In-Field Cassava Whitefly Pest Surveillance With Machine Learning Jeremy Francis Tusubira (Artificial Intelligence Lab, Makerere University), Solomon Nsumba (Artificial Intelligence Lab, Makerere University), Flavia Ninsiima (Artificial Intelligence Lab, Makerere University), Benjamin Akera (Artificial Intelligence Lab, Makerere University), Guy Acellam (Artificial Intelligence Lab, Makerere University), Joyce Nakatumba (Artificial Intelligence Lab, Makerere University), Ernest Mwebaze (Google Research), John Quinn (Google Research), and Tonny Oyana (Geospatial Data and Computational Intelligence Lab, Makerere University)	303
Weakly Supervised Learning Guided by Activation Mapping Applied to a Novel Citrus Pest Benchmark Edson Bollis (University of Campinas (UNICAMP), Campinas, SP, Brazil), Helio Pedrini (University of Campinas (UNICAMP), Campinas, SP, Brazil), and Sandra Avila (University of Campinas (UNICAMP), Campinas, SP, Brazil)	310
Fine-Grained Recognition in High-Throughput Phenotyping	.320
A Novel Technique Combining Image Processing, Plant Development Properties, and the Hungarian Algorithm, to Improve Leaf Detection in Maize	330
Farm Parcel Delineation Using Spatio-Temporal Convolutional Networks Han Lin Aung (Stanford University), Burak Uzkent (Stanford University), Marshall Burke (Science Stanford University), David Lobell (Science Stanford University), and Stefano Ermon (Stanford University)	340
Climate Adaptation: Reliably Predicting From Imbalanced Satellite Data	350
PBVS: Perception Beyond the Visible Spectrum	
C-SURE: Shrinkage Estimator and Prototype Classifier for Complex-Valued Deep Learning Rudrasis Chakraborty (UC Berkeley / ICSI), Yifei Xing (UC Berkeley / ICSI), Minxuan Duan (Peking University), and Stella X. Yu (UC Berkeley / ICSI)	360
SOFEA: A Non-Iterative and Robust Optical Flow Estimation Algorithm for Dynamic Vision Sensors	368

Mosaic Super-Resolution via Sequential Feature Pyramid Networks	378
TherlSuRNet – A Computationally Efficient Thermal Image Super-Resolution Network	388
Low-Resolution Overhead Thermal Tripwire for Occupancy Estimation	398
Unsupervised Object Detection via LWIR/RGB Translation	407
FusAtNet: Dual Attention Based SpectroSpatial Multimodal Fusion Network for Hyperspectral and LiDAR Classification	416
A Multi-level Supervision Model: A Novel Approach for Thermal Image Super Resolution Priya Kansal (Couger Inc, Shibuya, Tokyo, Japan) and Sabari Nathan (Couger Inc, Shibuya, Tokyo, Japan)	426

Thermal Image Super-Resolution Challenge – PBVS 2020 Rafael E. Rivadeneira (Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador), Angel D. Sappa (Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador; Computer Vision Center, Campus UAB, Bellaterra, Barcelona, Spain), Boris X. Vintimilla (Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador), Lin Guo (Oklahoma State University, Stillwater, OK, USA), Jiankun Hou (Oklahoma State University, Stillwater, OK, USA), Armin Mehri (Computer Vision Center, Campus UAB, Bellaterra, Barcelona, Spain), Parichehr Behjati Ardakani (Computer Vision Center, Campus UAB, Bellaterra, Barcelona, Spain), Heena Patel (SVNIT, Surat, India), Vishal Chudasama (SVNIT, Surat, India), Kalpesh Prajapati (SVNIT, Surat, India), Kishor P. Upla (SVNIT, Surat, India; NTNU, Gjøvik, Norway), Raghavendra Ramachandra (NTNU, Gjøvik, Norway), Kiran Raja (NTNU, Gjøvik, Norway), Christoph Busch (NTNU, Gjøvik, Norway), Feras Almasri (Universite Libre de Bruxelles, Belgium), Olivier Debeir (Universite Libre de Bruxelles, Belgium), Sabari Nathan (Couger Inc, Japan), Priya Kansal (Couger Inc, Japan), Nolan Gutierrez (University of Texas at Arlington, Arlington, TX, USA), and William J. Beksi (University of Texas at Arlington, Arlington, TX, USA)	432
Low-Latency Hand Gesture Recognition with a Low-Resolution Thermal Imager	440
High-Resolution Radar Dataset for Semi-Supervised Learning of Dynamic Objects	450
Probabilistic Oriented Object Detection in Automotive Radar	458
VIFB: A Visible and Infrared Image Fusion Benchmark Xingchen Zhang (Shanghai Jiao Tong University; Imperial College London), Ping Ye (Shanghai Jiao Tong University), and Gang Xiao (Shanghai Jiao Tong University)	468
Fast Human Head and Shoulder Detection Using Convolutional Networks and RGBD Data Wassim A. El Ahmar (University of Ottawa, Ottawa, Ontario, Canada), Farzan Erlik Nowruzi (University of Ottawa, Ottawa, Ontario, Canada), and Robert Laganiere (University of Ottawa, Ottawa, Ontario, Canada)	479
An Evaluation of Objective Image Quality Assessment for Thermal Infrared Video Tone Mapping Michael Teutsch (Hensoldt Optronics GmbH, Oberkochen, Germany), Simone Sedelmaier (Hensoldt Optronics GmbH, Oberkochen, Germany; Ulm University of Applied Sciences, Germany), Sebastian Moosbauer (Hensoldt Optronics GmbH, Oberkochen, Germany), Gabriel Eilertsen (Linköping University, Sweden), and Thomas Walter (Ulm University of Applied Sciences, Germany)	488

Calibrated Vehicle Paint Signatures for Simulating Hyperspectral Imagery
Unsupervised Ensemble-Kernel Principal Component Analysis for Hyperspectral Anomaly Detection
Nicholas Merrill (U.S. Naval Research Laboratory, Naval Research Enterprise Internship Program) and Colin C. Olson (U.S. Naval Research Laboratory)
CLIC: Learned Image Compression
Improve Image Codec's Performance by Variating Post Enhancing Neural Network: Submission
of zxw for CLIC2020
3-D Context Entropy Model for Improved Practical Image Compression
Ultra Low Bitrate Learned Image Compression by Selective Detail Decoding

Learned Video Compression with Feature-Level Residuals Runsen Feng (CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, University of Science and Technology of China), Yaojun Wu (CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, University of Science and Technology of China), Zongyu Guo (CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, University of Science and Technology of China), Zhizheng Zhang (CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, University of Science and Technology of China), and Zhibo Chen (CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, University of Science and Technology of China)	529
Variable Rate Image Compression with Content Adaptive Optimization	533
SR-CL-DMC: P-Frame Coding with Super-Resolution, Color Learning, and Deep Motion Compensation Man M. Ho (Hosei University Tokyo, Japan), Jinjia Zhou (Hosei University and JST, PRESTO, Tokyo, Japan), Gang He (Xi'dian University Xi'an, China), Muchen Li (Hosei University Tokyo, Japan), and Lei Li (Xi'dian University Xi'an, China)	538
Low Bitrate Image Compression with Discretized Gaussian Mixture Likelihoods	543
Post-Processing Network Based on Dense Inception Attention for Video Compression	547
Efficient Context-Aware Lossy Image Compression	. 552
Compression Artifact Removal With Ensemble Learning of Neural Networks	555

Joint Learned and Traditional Video Compression for P Frame	560
Towards the Perceptual Quality Enhancement of Low Bit-Rate Compressed Images	. 565
A Hybrid Image Codec with Learned Residual Coding	. 570
Learned Low Bit-Rate Image Compression with Adversarial Mechanism	575
End-to-End Learning for Video Frame Compression With Self-Attention	. 580
A Training Method for Image Compression Networks to Improve Perceptual Quality of Reconstructions	. 585
Joint Motion and Residual Information Latent Representation for P-Frame Coding	. 590

A Video Compression Framework Using an Overfitted Restoration Neural Network	593
P-Frame Coding Proposal by NCTU: Parametric Video Prediction Through Backprop-Based Estimation	l Motion 598
An Image Compression Framework with Learning-Based Filter	602
Low-Rate Image Compression with Super-Resolution Learning	607
End-to-End Optimized Video Compression with MV-Residual Prediction	611
Multi-scale Grouped Dense Network for VVC Intra Coding Xin Li (CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, University of Science and Technology of China), Simeng Sun (CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, University of Science and Technology of China), Zhizheng Zhang (CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, University of Science and Technology of China), and Zhibo Chen (CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, University of Science and Technology of China)	615
Image Compression with Encoder-Decoder Matched Semantic Segmentation	619

Jing Zhou (Fujitsu R&D Center Co. Ltd.), Akira Nakagawa (Fujitsu Laboratories Ltd.), Keizo Kato (Fujitsu Laboratories Ltd.), Sihan Wen (Fujitsu R&D Center Co. Ltd.), Kimihiko Kazui (Fujitsu Laboratories Ltd.), and Zhiming Tan (Fujitsu R&D Center Co. Ltd.)
Adapting JPEG XS Gains and Priorities to Tasks and Contents
Lossy Compression with Distortion Constrained Optimization
Adversarial Distortion for Learned Video Compression
DIRA: Diagram Image Retrieval and Analysis: Representation,
Learning, and Similarity Metrics
Learning, and Similarity Metrics Syntharch: Interactive Image Search with Attribute-Conditioned Synthesis
Syntharch: Interactive Image Search with Attribute-Conditioned Synthesis
Syntharch: Interactive Image Search with Attribute-Conditioned Synthesis
Syntharch: Interactive Image Search with Attribute-Conditioned Synthesis Zac Yu (University of Pittsburgh) and Adriana Kovashka (University of Pittsburgh) Learning Spatial Relationships Between Samples of Patent Image Shapes

Diagram Image Retrieval and Analysis: Challenges and Opportunities	685
A Simplified Framework for Zero-Shot Cross-Modal Sketch Data Retrieval	699
EarthVision: EarthVision: Large Scale Computer Vision for Rem Sensing Imagery	iote
ResDepth: Learned Residual Stereo Reconstruction	707
DALES: A Large-Scale Aerial LiDAR Data Set for Semantic Segmentation	717
S2A: Wasserstein GAN with Spatio-Spectral Laplacian Attention for Multi-spectral Band Synthesis	727
Density Map Guided Object Detection in Aerial Images	737
StandardGAN: Multi-source Domain Adaptation for Semantic Segmentation of Very High Resolution Satellite Images by Data Standardization	747
Monte-Carlo Siamese Policy on Actor for Satellite Image Super Resolution Litu Rout (Signal and Image Processing Group, Space Applications Centre, Indian Space Research Organisation), Saumyaa Shah (Work done at Space Applications Centre), S Manthira Moorthi (Signal and Image Processing Group, Space Applications Centre, Indian Space Research Organisation), and Debajyoti Dhar (Signal and Image Processing Group, Space Applications Centre, Indian Space Research Organisation)	757

SpaceNet 6: Multi-sensor All Weather Mapping Dataset
FGCN: Deep Feature-Based Graph Convolutional Network for Semantic Segmentation of Urban 3 Point Clouds
Meta-Learning for Few-Shot Land Cover Classification
Toronto-3D: A Large-Scale Mobile LiDAR Dataset for Semantic Segmentation of Urban Roadways 797 Weikai Tan (University of Waterloo, Waterloo, ON, Canada), Nannan Qin (University of Waterloo, Waterloo, ON, Canada), Lingfei Ma (University of Waterloo, Waterloo, ON, Canada), Ying Li (University of Waterloo, Waterloo, ON, Canada), Jing Du (Jimei University, Xiamen, China), Guorong Cai (Jimei University, Xiamen, China), Ke Yang (University of Waterloo, Waterloo, ON, Canada), and Jonathan Li (University of Waterloo, Waterloo, ON, Canada)
Deep Regression for Imaging Solar Magnetograms Using Pyramid Generative Adversarial Networks
Multi-image Super-Resolution for Remote Sensing Using Deep Recurrent Networks
RasterNet: Modeling Free-Flow Speed Using LiDAR and Overhead Imagery

Sen1Floods11: A Georeferenced Dataset to Train and Test Deep Learning Flood Algorithms f Sentinel-1	tor 835
Derrick Bonafilia (Cloud to Street), Beth Tellman (Cloud to Street; Earth Institute, Columbia University), Tyler Anderson (Cloud to Street), and Erica Issenberg (Cloud to Street)	
VAS: Vision for All Seasons: Adverse Weather and Lighting Conditions	
HIDeGan: A Hyperspectral-Guided Image Dehazing GAN Aditya Mehta (BITS, Pilani, India), Harsh Sinha (BITS, Pilani, India), Pratik Narang (BITS, Pilani, India), and Murari Mandal (MNIT, Jaipur, India)	846
Removal of Image Obstacles for Vehicle-Mounted Surrounding Monitoring Cameras by Real-Video Inpainting	
A New Multimodal RGB and Polarimetric Image Dataset for Road Scenes Analysis	867
mplicit Euler ODE Networks for Single-Image Dehazing	877
CLVISION: Continual Learning in Computer Vision	
Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis	887
Cognitively-Inspired Model for Incremental Learning Using a Few Examples	897
Continual Learning of Object Instances Kishan Parshotam (University of Amsterdam, The Netherlands; Prosus, The Netherlands) and Mert Kilickaya (University of Amsterdam, The Netherlands)	907

Generative Feature Replay for Class-Incremental Learning	915
Stream-51: Streaming Classification and Novelty Detection from Videos Ryne Roady (Rochester Institute of Technology), Tyler L. Hayes (Rochester Institute of Technology), Hitesh Vaidya (Rochester Institute of Technology), and Christopher Kanan (Rochester Institute of Technology; Paige; Cornell Tech)	925
CatNet: Class Incremental 3D ConvNets for Lifelong Egocentric Gesture Recognition	. 935
Dropout as an Implicit Gating Mechanism for Continual Learning	945
What Is Happening Inside a Continual Learning Model? A Representation-Based Evaluation of Representational Forgetting	
M2SGD: Learning to Learn Important Weights Nicholas I-Hsien Kuo (RSCS, The Australian National University), Mehrtash Harandi (Monash University, Australia), Nicolas Fourrier (Pôle Universitaire Léonard de Vinci, Paris La Défense, France), Christian Walder (RSCS, The Australian National University; Data61, CSIRO, Australia), Gabriela Ferraro (RSCS, The Australian National University; Data61, CSIRO, Australia), and Hanna Suominen (RSCS, The Australian National University; Data61, CSIRO, Australia; University of Turku, Turku, Finland)	957
Few-Shot Image Recognition for UAV Sports Cinematography	965
Generalized Class Incremental Learning	970
StackNet: Stacking Feature Maps for Continual Learning	975

Noise-Based Selection of Robust Inherited Model for Accurate Continual Learning
Rehearsal-Free Continual Learning Over Small Non-I.I.D. Batches
Continual Reinforcement Learning in 3D Non-Stationary Environments
Relationship Matters: Relation Guided Knowledge Transfer for Incremental Learning of Object Detectors
Reducing Catastrophic Forgetting with Learning on Synthetic Data
Continual Learning for Anomaly Detection in Surveillance Videos
Generating Accurate Pseudo Examples for Continual Learning
DLGC: Deep Learning for Geometric Computing
Subpixel Dense Refinement Network for Skeletonization
Capturing Cellular Topology in Multi-Gigapixel Pathology Images
A Novel Local Geometry Capture in PointNet++ for 3D Classification

L3DGM: Learning 3D Generative Models

VoronoiNet: General Functional Approximators with Local Support	1069
Deep Octree-Based CNNs with Output-Guided Skip Connections for 3D Shape and Scene Completion	1074
Generalized Autoencoder for Volumetric Shape Generation	1082
Topology-Aware Single-Image 3D Shape Reconstruction	1089
Geometry to the Rescue: 3D Instance Reconstruction from a Cluttered Scene	1098
Mesh Variational Autoencoders with Edge Contraction Pooling Yu-Jie Yuan (Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology, CAS; University of Chinese Academy of Sciences), Yu-Kun Lai (Cardiff University, UK), Jie Yang (Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology, CAS; University of Chinese Academy of Sciences), Qi Duan (SenseTime Research), Hongbo Fu (City University of Hong Kong), and Lin Gao (Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology, CAS; University of Chinese Academy of Sciences; Shenzhen Research Institute of Big Data)	1105

CVPM: Computer Vision for Physiological Measurement

Remote Estimation of Heart Rate Based on Multi-scale Facial ROIs	0
Enhancing Remote-PPG Pulse Extraction in Disturbance Scenarios Utilizing Spectral Characteristics	0
Predicting Brainwaves from Face Videos	9
A Meta-Analysis of the Impact of Skin Tone and Gender on Non-Contact Photoplethysmography Measurements	
Analysis of Pulse Transit Time Derived From Imaging Photoplethysmography and Microwave Sensor-Based Ballistocardiography	6
HeartTrack: Convolutional Neural Network for Remote Video-Based Heart Rate Monitoring 116. Olga Perepelkina (Neurodata Lab LLC, Miami, USA), Mikhail Artemyev (Neurodata Lab LLC, Miami, USA), Marina Churikova (Neurodata Lab LLC, Miami, USA; Lomonosov Moscow State University, Faculty of Biology, Department of Higher Nervous Activity, Moscow, Russia), and Mikhail Grinenko (Neurodata Lab LLC, Miami, USA)	3
Continuous Estimation of Emotional Change Using Multimodal Affective Responses	2
Stress Estimation Using Multimodal Biosignal Information from RGB Facial Video	1
Automated Depth Video Monitoring for Fall Reduction: A Case Study	8

Remote Photoplethysmography: Rarely Considered Factors	197
In Search of Life: Learning from Synthetic Data to Detect Vital Signs in Videos	207
Convulsive Movement Detection Using Low-Resolution Thermopile Sensor Array	217
Predicting Fall Probability Based on a Validated Balance Scale	224
An Assessment of Algorithms to Estimate Respiratory Rate from the Remote Photoplethysmogram	232
Long Short-Term Memory Deep-Filter in Remote Photoplethysmography	242

Steven Fernandes Raj (University of (University of Cen (University of Cen (University of Cen Acceleration and Vintila (Solution A	e Videos Using Attribution-Based Confidence Metric	1250
Mikhail Kopeliovi Neurotechnologie Kalinin (Southern Rostov-on-Don, R University, Center Federation), and	ment of Heart Rate in Video	1260
Detection in Videos Alexander Woycz Dortmund, Germ Sciences and Arts	Using Active Contours and Gaussian Mixture Models for Heads. Byk (University of Applied Sciences and Arts Dortmund, analy), Vincent Fleischhauer (University of Applied sontmund, Dortmund, Germany), and Sebastian ersity of Applied Sciences and Arts Dortmund, Dortmund,	
Xiaobai Li (Center of Oulu, Finland), Processing of Chin Computing Techn of China), Hao Lu (Kof China), Hao Lu (Kof China), CAS, Information Procession and Signal Dantcheva (STAR) Machine Vision and Shiguang Shan (Korn Computing Technology, CAS, Information Procession and Signal Dantcheva (STAR)	on Remote Physiological Signal Sensing (RePSS)	1274
1282 Mikhail Artemyev (Neurodata Lab L Faculty of Biology Russia), Mikhail G	oproach to the Challenge on Computer Vision for Physiologic v (Neurodata Lab LLC, Miami, USA), Marina Churikova LLC, Miami, USA; Lomonosov Moscow State University, y, Department of Higher Nervous Activity, Moscow, Grinenko (Neurodata Lab LLC, Miami, USA), and Olga urodata Lab LLC, Miami, USA)	al Measurement

SAIAD: Safe Artificial Intelligence for Automated Driving

Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision	39
Improved Noise and Attack Robustness for Semantic Segmentation by Using Multi-task Training with Self-Supervised Depth Estimation	99
Attentional Bottleneck: Towards an Interpretable Deep Driving Network	0
Leveraging Combinatorial Testing for Safety-Critical Computer Vision Datasets	4
Multivariate Confidence Calibration for Object Detection	<u>?</u> 2
Detection and Retrieval of Out-of-Distribution Objects in Semantic Segmentation	31
Generating Socially Acceptable Perturbations for Efficient Evaluation of Autonomous Vehicles	11
Robust Semantic Segmentation by Redundant Networks with a Layer-Specific Loss Contribution and Majority Vote	
Self-Supervised Domain Mismatch Estimation for Autonomous Perception	59

Unsupervised Temporal Consistency Metric for Video Segmentation in Highly-Automated Driving	369
Mind the Gap – A Benchmark for Dense Depth Prediction Beyond Lidar	
Explaining Autonomous Driving by Learning End-to-End Visual Attention	389
Using Mixture of Expert Models to Gain Insights Into Semantic Segmentation	399
DynaVis: Dynamic Scene Reconstruction	
The "Vertigo Effect" on Your Smartphone: Dolly Zoom via Single Shot View Synthesis	107
Bilinear Parameterization for Differentiable Rank-Regularization	116

Semi-Supervised 3D Face Representation Learning from Unconstrained Photo Collections ... 1426
Zhongpai Gao (Artificial Intelligence Institute, Shanghai Jiao Tong
University), Juyong Zhang (University of Science and Technology of
China), Yudong Guo (University of Science and Technology of China),
Chao Ma (Artificial Intelligence Institute, Shanghai Jiao Tong
University), Guangtao Zhai (Artificial Intelligence Institute,
Shanghai Jiao Tong University), and Xiaokang Yang (Artificial
Intelligence Institute, Shanghai Jiao Tong University)

WiCV: Women in Computer Vision

Tatiana Gabruseva (Independent Researcher), Dmytro Poplavskiy (Topcon Positioning Systems, Brisbane, Queensland, Australia), and Alexandr Kalinin (University of Michigan, USA; Shenzhen Research Institute of Big Data, Shenzhen, China)	1436
REIN: Flexible Mesh Generation from Point Clouds Rangel Daroya (University of the Philippines Diliman, Electrical and Electronics Engineering Institute), Rowel Atienza (University of the Philippines Diliman, Electrical and Electronics Engineering Institute), and Rhandley Cajote (University of the Philippines Diliman, Electrical and Electronics Engineering Institute)	1444
In Defense of the Triplet Loss Again: Learning Robust Person Re-Identification with F Approximated Triplet Loss and Label Distillation	
Salient Object Detection by Contextual Refinement	1464
Eff-UNet: A Novel Architecture for Semantic Segmentation in Unstructured Environn Bhakti Baheti (Center of Excellence in Signal and Image Processing, SGGSIET, Nanded, India), Shubham Innani (Center of Excellence in Signal and Image Processing, SGGSIET, Nanded, India), Suhas Gajre (Center of Excellence in Signal and Image Processing, SGGSIET, Nanded, India), and Sanjay Talbar (Center of Excellence in Signal and Image Processing, SGGSIET, Nanded, India)	nent 1473
Using Sinusoidally-Modulated Noise as a Surrogate for Slow-Wave Sleep to Accompl Unsupervised Dictionary Learning in a Spike-Based Sparse Coding Model	
RIT-18: A Novel Dataset for Compositional Group Activity Understanding	1488

Squeeze U-Net: A Memory and Energy Efficient Image Segmentation Network	1495
Learning Furniture Compatibility with Graph Neural Networks Luisa F. Polanía (Target Corporation, Sunnyvale, California, USA), Mauricio Flores (Target Corporation, Sunnyvale, California, USA), Matthew Nokleby (Target Corporation, Sunnyvale, California, USA), and Yiran Li (Target Corporation, Sunnyvale, California, USA)	1505
CICV: Compositionality in Computer Vision	
Inferring Temporal Compositions of Actions Using Probabilistic Automata	1514
Understanding Action Recognition in Still Images	1523
Decomposing Image Generation Into Layout Prediction and Conditional Synthesis	1530
MVM: Minds vs. Machines: How Far Are We From the Common Sense of a Toddler?	1
Learning Intuitive Physics by Explaining Surprise Hung Nguyen (Oregon State University), Jay Patravali (Oregon State University), Fuxin Li (Oregon State University), and Alan Fern (Oregon State University)	1539
Story Completion with Explicit Modeling of Commonsense Knowledge	1543
Visual Commonsense Representation Learning via Causal Inference Tan Wang (University of Electronic Science and Technology of China; Nanyang Technological University), Jianqiang Huang (Damo Academy, Alibaba Group; Nanyang Technological University), Hanwang Zhang (Nanyang Technological University), and Qianru Sun (Singapore Management University)	1547
SomethingFinder: Localizing Undefined Regions Using Referring Expressions	1551

Eric Taylor (Vector Institute, University of Guelph), Shashank Shekhar (University of Guelph, Vector Institute), and Graham W. Taylor (University of Guelph, Vector Institute, CIFAR Canada Al Chair)
Hierarchical Color Learning in Convolutional Neural Networks
Understanding Knowledge Gaps in Visual Question Answering: Implications for Gap Identification and Testing
3DQ-Nets: Visual Concepts Emerge in Pose Equivariant 3D Quantized Neural Scene Representations
CSPNet: A New Backbone that Can Enhance Learning Capability of CNN
Chien-Yao Wang (Institute of Information Science, Academia Sinica, Taiwan), Hong-Yuan Mark Liao (Institute of Information Science, Academia Sinica, Taiwan; Providence University, Taiwan), Yueh-Hua Wu (Institute of Information Science, Academia Sinica, Taiwan; National Taiwan University, Taiwan), Ping-Yang Chen (National Chiao Tung University, Taiwan), Jun-Wei Hsieh (National Chiao Tung University,
Chien-Yao Wang (Institute of Information Science, Academia Sinica, Taiwan), Hong-Yuan Mark Liao (Institute of Information Science, Academia Sinica, Taiwan; Providence University, Taiwan), Yueh-Hua Wu (Institute of Information Science, Academia Sinica, Taiwan; National Taiwan University, Taiwan), Ping-Yang Chen (National Chiao Tung University, Taiwan), Jun-Wei Hsieh (National Chiao Tung University, Taiwan), and I-Hau Yeh (Elan Microelectronics Corporation, Taiwan) Enabling Monocular Depth Perception at the Very Edge

A Hardware Prototype Targeting Distributed Deep Learning for On-Device Inference
Challenges in Energy-Efficient Deep Neural Network Training with FPGA
Recursive Hybrid Fusion Pyramid Network for Real-Time Small Object Detection on Embedded Devices
EmotioNet: Challenges and Promises to Inferring Emotion From Images and Video
Challenges in Recognizing Spontaneous and Intentionally Expressed Reactions to Positive and Negative Images
Discriminant Distribution-Agnostic Loss for Facial Expression Recognition in the Wild
Predicting Sentiments in Image Advertisements Using Semantic Relations Among Sentiment Labels
Facial Action Unit Recognition in the Wild with Multi-task CNN Self-Training for the EmotioNet Challenge
TAL EmotioNet Challenge 2020 Rethinking the Model Chosen Problem in Multi-task Learning 1653 Pengcheng Wang (TAL Education Group), Zihao Wang (TAL Education Group), Zhilong Ji (TAL Education Group), Xiao Liu (TAL Education Group), Songfan Yang (TAL Education Group), and Zhongqin Wu (TAL Education Group)

Multiple Transfer Learning and Multi-label Balanced Training Strategies for Facial AU Detection in the Wild	1657
Sijie Ji (Nanyang Technological University Singapore), Kai Wang (ShenZhen Key Lab of Computer Vision and Pattern Recognition, SIAT-SenseTime Joint Lab, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science), Xiaojiang Peng (ShenZhen Key Lab of Computer Vision and Pattern Recognition, SIAT-SenseTime Joint Lab, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science), Jianfei Yang (Nanyang Technological University Singapore), Zhaoyang Zeng (Sun Yat-Sen University, China), and Yu Qiao (ShenZhen Key Lab of Computer Vision and Pattern Recognition, SIAT-SenseTime Joint Lab, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science)	1037
NTIRE: New Trends in Image Restoration and Enhancement	
NTIRE 2020 Challenge on Image and Video Deblurring Seungjun Nah (ASRI, SNU, Korea), Sanghyun Son (ASRI, SNU, Korea), Radu Timofte (ETH Zurich, Switzerland), and Kyoung Mu Lee (ASRI, SNU, Korea)	1662
Rendering Natural Camera Bokeh Effect with Deep Learning	1676
Deep Wavelet Network with Domain Adaptation for Single Image Demoireing	1687
Hierarchical Regression Network for Spectral Reconstruction from RGB Images	1695
Investigating Loss Functions for Extreme Super-Resolution	1705
C3Net: Demoiréing Network Attentive in Channel, Color and Concatenation	1713
Guided Frequency Separation Network for Real-World Super-Resolution Yuanbo Zhou (College of Physics and Information Engineering, Fuzhou University), Wei Deng (College of Physics and Information Engineering, Fuzhou University), Tong Tong (College of Physics and Information Engineering, Fuzhou University), and Qinquan Gao (College of Physics and Information Engineering, Fuzhou University)	1722

Trident Dehazing Network	1732
Densely Self-Guided Wavelet Network for Image Denoising	1742
MMDM: Multi-frame and Multi-scale for Image Demoiréing	1751
Real-World Super-Resolution Using Generative Adversarial Networks	1760
Deep Generative Adversarial Residual Convolutional Networks for Real-World Super-Resolution	1769
Perceptual Extreme Super-Resolution Network with Receptive Field Block Taizhang Shang (OPPO Research, China), Qiuju Dai (OPPO Research, China), Shengchen Zhu (OPPO Research, China), Tong Yang (OPPO Research, China), and Yandong Guo (OPPO Research, China)	1778
Unsupervised Real Image Super-Resolution via Generative Variational AutoEncoc Zhi-Song Liu (The Hong Kong Polytechnic University; LIX, École polytechnique), Wan-Chi Siu (The Hong Kong Polytechnic University), Li-Wen Wang (The Hong Kong Polytechnic University), Chu-Tak Li (The Hong Kong Polytechnic University), Marie-Paule Cani (LIX, École polytechnique), and Yui-Lam Chan (The Hong Kong Polytechnic University)	der 1788
NH-HAZE: An Image Dehazing Benchmark with Non-homogeneous Hazy and Haz 1798 Codruta O. Ancuti (Universitatea Politehnica Timisoara, Romania), Cosmin Ancuti (Universitatea Politehnica Timisoara, Romania; Institute of Informatics and Applications, University of Girona, Spain), and Radu Timofte (ETH Zurich, Switzerland)	e-Free Images

NTIRE 2020 Challenge on Spectral Reconstruction from an RGB Image	1806
Real Image Denoising Based on Multi-scale Residual Dense Block and Cascaded U-Net With Block-Connection	1823
Ensemble Dehazing Networks for Non-homogeneous Haze	1832
NonLocal Channel Attention for NonHomogeneous Image Dehazing	1842
Residual Channel Attention Generative Adversarial Network for Image Super-Resolution and Noise Reduction	1852
Unsupervised Real-World Super Resolution with Cycle Generative Adversarial Network and Domain Discriminator Gwantae Kim (Korea University, Seoul, Korea), Jaihyun Park (Korea University, Seoul, Korea), Kanghyu Lee (Korea University, Seoul, Korea), Junyeop Lee (Korea University, Seoul, Korea), Jeongki Min (Korea University, Seoul, Korea), Bokyeung Lee (Korea University, Seoul, Korea), David K. Han (Army Research Laboratory, Adelphi, MD, USA), and Hanseok Ko (Korea University, Seoul, Korea)	1862
High-Resolution Dual-Stage Multi-level Feature Aggregation for Single Image and Video Deblurring	1872
NTIRE 2020 Challenge on Image Demoireing: Methods and Results	1882

Adaptive Weighted Attention Network with Camera Spectral Sensitivity Prior for Spectral Reconstruction from RGB Images	1894
Jiaojiao Li (Xidian University, China), Chaoxiong Wu (Xidian University, China), Rui Song (Xidian University, China), Yunsong Li (Xidian University, China), and Fei Liu (Xidian University, China)	
Unsupervised Single Image Super-Resolution Network (USISResNet) for Real-World Data Use Generative Adversarial Network Kalpesh Prajapati (Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, India), Vishal Chudasama (Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, India), Heena Patel (Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, India), Kishor Upla (Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, India; Norwegian University of Science and Technology (NTNU), Gjøvik, Norway), Raghavendra Ramachandra (Norwegian University of Science and Technology (NTNU), Gjøvik, Norway), Kiran Raja (Norwegian University of Science and Technology (NTNU), Gjøvik, Norway), and Christoph Busch (Norwegian University of Science and Technology (NTNU), Gjøvik, Norway)	sing 1904
Real-World Super-Resolution via Kernel Estimation and Noise Injection	1914
Unsupervised Image Super-Resolution with an Indirect Supervised Path	1924
Dual-Domain Deep Convolutional Neural Networks for Image Demoireing	1934
Moiré Pattern Removal via Attentive Fractal Network	1943
SimUSR: A Simple but Strong Baseline for Unsupervised Image Super-Resolution	1953
NTIRE 2020 Challenge on Video Quality Mapping: Methods and Results	1962

Knowledge Transfer Dehazing Network for NonHomogeneous Dehazing	975
RGB to Spectral Reconstruction via Learned Basis Functions and Weights	984
Fast Deep Multi-patch Hierarchical Network for Nonhomogeneous Image Dehazing	994
Superkernel Neural Architecture Search for Image Denoising	002
Residual Pixel Attention Network for Spectral Reconstruction from RGB Images	012
FBRNN: Feedback Recurrent Neural Network for Extreme Image Super-Resolution	021
NTIRE 2020 Challenge on NonHomogeneous Dehazing	029
NTIRE 2020 Challenge on Perceptual Extreme Super-Resolution: Methods and Results 20 Kai Zhang (Computer Vision Lab, ETH Zurich, Switzerland), Shuhang Gu (Computer Vision Lab, ETH Zurich, Switzerland), and Radu Timofte (Computer Vision Lab, ETH Zurich, Switzerland)	045
NTIRE 2020 Challenge on Real-World Image Super-Resolution: Methods and Results	058
NTIRE 2020 Challenge on Real Image Denoising: Dataset, Methods and Results	077

DA-cGAN: A Framework for Indoor Radio Design Using a Dimension-Aware Conditional Generative Adversarial Network	2089
Joint Learning of Blind Video Denoising and Optical Flow Estimation	2099
Deploying Image Deblurring Across Mobile Devices: A Perspective of Quality and Latency Cheng-Ming Chiang (MediaTek Inc., Hsinchu, Taiwan), Yu Tseng (MediaTek Inc., Hsinchu, Taiwan), Yu-Syuan Xu (MediaTek Inc., Hsinchu, Taiwan), Hsien-Kai Kuo (MediaTek Inc., Hsinchu, Taiwan), Yi-Min Tsai (MediaTek Inc., Hsinchu, Taiwan), Guan-Yu Chen (MediaTek Inc., Hsinchu, Taiwan), Koan-Sin Tan (MediaTek Inc., Hsinchu, Taiwan), Wei-Ting Wang (MediaTek Inc., Hsinchu, Taiwan), Shou-Yao Roy Tseng (MediaTek Inc., Hsinchu, Taiwan), Wei-Shiang Lin (MediaTek Inc., Hsinchu, Taiwan), Chia-Lin Yu (MediaTek Inc., Hsinchu, Taiwan), Chia-Ming Cheng (MediaTek Inc., Hsinchu, Taiwan), and Hung-Jen Chen (MediaTek Inc., Hsinchu, Taiwan)	2109
MSFSR: A Multi-stage Face Super-Resolution with Accurate Facial Representation via Enhanced Facial Boundaries	2120
Color-Wise Attention Network for Low-Light Image Enhancement	2130
GradNet Image Denoising	2140
Photosequencing of Motion Blur Using Short and Long Exposures Vijay Rengarajan (Carnegie Mellon University), Shuo Zhao (Carnegie Mellon University), Ruiwen Zhen (Samsung Research America), John Glotzbach (Samsung Research America), Hamid Sheikh (Samsung Research America), and Aswin C. Sankaranarayanan (Carnegie Mellon University)	2150
Multi-step Reinforcement Learning for Single Image Super-Resolution	2160
A Review of an Old Dilemma: Demosaicking First, or Denoising First?	2169

Sensor-Realistic Synthetic Data Engine for Multi-frame High Dynamic Range Photography . Jinhan Hu (Arizona State University), Gyeongmin Choe (Samsung Research America), Zeeshan Nadir (Samsung Research America), Osama Nabil (UCLA), Seok-Jun Lee (Samsung Research America), Hamid Sheikh (Samsung Research America), Youngjun Yoo (Samsung Research America), and Michael Polley (Samsung Research America)	2180
ImagePairs: Realistic Super Resolution Dataset via Beam Splitter Camera Rig	2190
Identity Enhanced Residual Image Denoising	2201
Structure Preserving Compressive Sensing MRI Reconstruction Using Generative Adversari	
Networks	2211
LIDIA: Lightweight Learned Image Denoising with Instance Adaptation	2220
Sky Optimization: Semantically Aware Image Processing of Skies in Low-Light Photography Orly Liba (Google Research), Longqi Cai (Google Research), Yun-Ta Tsai (Google Research), Elad Eban (Google Research), Yair Movshovitz-Attias (Google Research), Yael Pritch (Google Research), Huizhong Chen (Google Research), and Jonathan T. Barron (Google Research)	2230
Fast and Flexible Image Blind Denoising via Competition of Experts	2239
FabSoften: Face Beautification via Dynamic Skin Smoothing, Guided Feathering, and Textur Restoration	
Sudha Velusamy (Samsung R&D Institute, Bangalore, India), Rishubh Parihar (Samsung R&D Institute, Bangalore, India), Raviprasad Kini (Samsung R&D Institute, Bangalore, India), and Aniket Rege (Samsung R&D Institute, Bangalore, India)	22 10
Physically Plausible Spectral Reconstruction from RGB Images	2257
Semantic Pixel Distances for Image Editing	2267
Replacing Mobile Camera ISP with a Single Deep Learning Model	2275

L2UWE: A Framework for the Efficient Enhancement of Low-Light Underwater Images Using Local Contrast and Multi-scale Fusion	2286
WTDDLE: Text and Documents in the Deep Learning Era	
A Method for Detecting Text of Arbitrary Shapes in Natural Scenes that Improves Text Spotting	2296
Textual Visual Semantic Dataset for Text Spotting	2306
READ: Recursive Autoencoders for Document Layout Generation	2316
On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention	2326
A Large Dataset of Historical Japanese Documents with Complex Layouts	2336
An Accurate Segmentation-Based Scene Text Detector with Context Attention and Repulsive Text Border	2344
Illegible Text to Readable Text: An Image-to-Image Transformation Using Conditional Sliced Wasserstein Adversarial Networks	2353

Optical Braille Recognition Based on Semantic Segmentation Network with Auxiliary Learning
Strategy
Font-ProtoNet: Prototypical Network-Based Font Identification of Document Images in Low Data Regime
Information Extraction from Document Images via FCA-Based Template Detection and Knowledg Graph Rule Induction
An OCR for Classical Indic Documents Containing Arbitrarily Long Words
Visual and Textual Deep Feature Fusion for Document Image Classification
CLEval: Character-Level Evaluation for Text Detection and Recognition Tasks
Recognizing Handwritten Mathematical Expressions via Paired Dual Loss Attention Network and Printed Mathematical Expressions

Symbol Spotting on Digital Architectural Floor Plans Using a Deep Learning-Based Framework 2419 Alireza Rezvanifar (University of Victoria, British Columbia, Canada),
Melissa Cote (University of Victoria, British Columbia, Canada), and Alexandra Branzan Albu (University of Victoria, British Columbia, Canada)
Visual Parsing with Query-Driven Global Graph Attention (QD-GGA): Preliminary Results for Handwritten Math Formula Recognition
CascadeTabNet: An Approach for End to End Table Detection and Structure Recognition From Image-Based Documents
Al-City: Al City Challenge
Viewpoint-Aware Channel-Wise Attentive Network for Vehicle Re-Identification
City-Scale Multi-camera Vehicle Tracking by Semantic Attribute Parsing and Cross-Camera Tracklet Matching
Yuhang He (Xi ['] an Jiaotong University), Jie Han (Xi'an Jiaotong University), Wentao Yu (Xi'an Jiaotong University), Xiaopeng Hong (Xi'an Jiaotong University), Xing Wei (Xi'an Jiaotong University), and Yihong Gong (Xi'an Jiaotong University)
A Vehicle Counts by Class Framework Using Distinguished Regions Tracking at Multiple Intersections
Dual Embedding Expansion for Vehicle Re-Identification

Multi-domain Learning and Identity Mining for Vehicle Re-Identification
Further Non-Local and Channel Attention Networks for Vehicle Re-Identification
Multi-granularity Tracking with Modularlized Components for Unsupervised Vehicles Anomaly Detection
ELECTRICITY: An Efficient Multi-camera Vehicle Tracking System for Intelligent City
Vehicle Re-Identification Based on Complementary Features
Towards Real-Time Traffic Movement Count and Trajectory Reconstruction Using Virtual Traffic Lanes
Zero-VIRUS: Zero-Shot Vehicle Route Understanding System for Intelligent Transportation 2534 Lijun Yu (Language Technologies Institute, Carnegie Mellon University), Qianyu Feng (Language Technologies Institute, Carnegie Mellon University; University of Technology Sydney), Yijun Qian (Language Technologies Institute, Carnegie Mellon University), Wenhe Liu (Language Technologies Institute, Carnegie Mellon University), and Alexander G. Hauptmann (Language Technologies Institute, Carnegie Mellon University)

Determining Vehicle Turn Counts at Multiple Intersections by Separated Vehicle Classes Using CNNs Ján Folenta (Graph@FIT, Brno University of Technology, Czech Republic), Jakub Španhel (Graph@FIT, Brno University of Technology, Czech Republic), Vojtech Bartl (Graph@FIT, Brno University of Technology, Czech Republic), and Adam Herout (Graph@FIT, Brno University of Technology, Czech Republic)	2544
Going Beyond Real Data: A Robust Visual Representation for Vehicle Re-Identification Zhedong Zheng (Baidu Inc.; University of Technology Sydney), Minyue Jiang (Baidu Inc.), Zhigang Wang (Baidu Inc.), Jian Wang (Baidu Inc.), Zechen Bai (Baidu Inc.), Xuanmeng Zhang (Baidu Inc.; Zhejiang University), Xin Yu (University of Technology Sydney), Xiao Tan (Baidu Inc.), Yi Yang (University of Technology Sydney), Shilei Wen (Baidu Inc.), and Errui Ding (Baidu Inc.)	2550
Countor: Count Without Bells and Whistles	2559
VOC-ReID: Vehicle Re-Identification Based on Vehicle-Orientation-Camera	2566
Vehicle Re-Identification in Multi-camera Scenarios Based on Ensembling Deep Learning Features Paula Moral (Video Processing and Understanding Lab, Universidad Autónoma de Madrid, Madrid, Spain), Álvaro García-Martín (Video Processing and Understanding Lab, Universidad Autónoma de Madrid, Madrid, Spain), and José M. Martínez (Video Processing and Understanding Lab, Universidad Autónoma de Madrid, Madrid, Spain)	2574
Fractional Data Distillation Model for Anomaly Detection in Traffic Videos	2581
StRDAN: Synthetic-to-Real Domain Adaptation Network for Vehicle Re-Identification	2590
Robust and Fast Vehicle Turn-Counts at Intersections via an Integrated Solution From Detection, Tracking and Trajectory Modeling	2598

TASK – Intelligent Traffic Analysis Software Kit	
Minh-Triet Tran (University of Science, Ho Chi Minh City, Vi	ietnam;
Vietnam National University, Ho Chi Minh City, Vietnam; Jo	ohn von
Neumann Institute, Ho Chi Minh City, Vietnam), Tam V. Ng	guyen
(University of Dayton, U.S.), Trung-Hieu Hoang (University	of Science,
Ho Chi Minh City, Vietnam; Vietnam National University, H	lo Chi Minh
City, Vietnam), Trung-Nghia Le (National Institute of Inform	
Japan), Khac-Tuan Nguyen (University of Science, Ho Chi N	
Vietnam; Vietnam National University, Ho Chi Minh City, V	
Dat-Thanh Dinh (University of Science, Ho Chi Minh City, V	'ietnam;
Vietnam National University, Ho Chi Minh City, Vietnam), 1	Γhanh-An
Nguyen (University of Science, Ho Chi Minh City, Vietnam;	Vietnam
National University, Ho Chi Minh City, Vietnam), Hai-Dang	Nguyen
(University of Science, Ho Chi Minh City, Vietnam; Vietnam	National
University, Ho Chi Minh City, Vietnam), Xuan-Nhat Hoang ((University of
Science, Ho Chi Minh City, Vietnam; Vietnam National Univ	versity, Ho
Chi Minh City, Vietnam), Trong-Tung Nguyen (University of	^c Science, Ho
Chi Minh City, Vietnam; Vietnam National University, Ho C	hi Minh City,
Vietnam), Viet-Khoa Vo-Ho (University of Science, Ho Chi N	1inh City,
Vietnam; Vietnam National University, Ho Chi Minh City, V	'ietnam),
Trong-Le Do (University of Science, Ho Chi Minh City, Vietn	
National University, Ho Chi Minh City, Vietnam), Lam Nguy	
Le (University of Science, Ho Chi Minh City, Vietnam; Vietna	
University, Ho Chi Minh City, Vietnam), Hoang-Phuc Nguye	
(University of Science, Ho Chi Minh City, Vietnam; Vietnam	
University, Ho Chi Minh City, Vietnam), Trong-Thang Pham	
City, Vietnam; Vietnam National University, Ho Chi Minh C	
Vietnam), Xuan-Vy Nguyen (University of Science, Ho Chi N	
Vietnam; Vietnam National University, Ho Chi Minh City, V	
Nguyen (University of Science, Ho Chi Minh City, Vietnam;	
National University, Ho Chi Minh City, Vietnam), Quoc-Cuc	•
(University of Science, Ho Chi Minh City, Vietnam; Vietnam	
University, Ho Chi Minh City, Vietnam), Hung Tran (University Chi Minh City Vietnam)	
Science, Ho Chi Minh City, Vietnam; Vietnam National Univ	•
Chi Minh City, Vietnam), Hieu Dao (University of Science, H	
City, Vietnam; Vietnam National University, Ho Chi Minh C	3 ·
Vietnam), Mai-Khiem Tran (University of Science, Ho Chi M	
Vietnam; Vietnam National University, Ho Chi Minh City, V Quang-Thuc Nguyen (University of Science, Ho Chi Minh Ci	
Vietnam National University, Ho Chi Minh City, Vietnam), 1	
Nguyen (University of Science, Ho Chi Minh City, Vietnam;	
National University, Ho Chi Minh City, Vietnam), The-Anh V	
(University of Science, Ho Chi Minh City, Vietnam; Vietnam	
University, Ho Chi Minh City, Vietnam), Gia-Han Diep (Univ	
Science, Ho Chi Minh City, Vietnam; Vietnam National Univ	
Chi Minh City, Vietnam), and Minh N. Do (University of Illir	•
Urbana-Champaign)	iois at
Oracia Ciampagn,	

Zhongji Liu (Baidu Inc.), Wei Zhang (Baidu Inc.), Xu Gao (Baidu Inc.), Hao Meng (Baidu Inc.), Xiao Tan (Baidu Inc.), Xiaoxing Zhu (Baidu Inc.), Zhan Xue (Baidu Inc.), Xiaoqing Ye (Baidu Inc.), Hongwu Zhang (Baidu Inc.), Shilei Wen (Baidu Inc.), and Errui Ding (Baidu Inc.)

Large Scale Vehicle Re-Identification by Knowledge Transfer From Simulated Data and Temporal Attention	2626
Attribute-Guided Feature Extraction and Augmentation Robust Learning for Vehicle Re-Identification	2632
Al City Challenge 2020 – Computer Vision for Smart Transportation Applications	2638
Towards Real-Time Systems for Vehicle Re-Identification, Multi-camera Tracking, and Anomaly Detection Neehar Peri (Center for Automation Research, UMIACS, University of Maryland, College Park), Pirazh Khorramshahi (Center for Automation Research, UMIACS, University of Maryland, College Park), Sai Saketh Rambhatla (Center for Automation Research, UMIACS, University of Maryland, College Park), Vineet Shenoy (Center for Automation Research, UMIACS, University of Maryland, College Park), Saumya Rawat (Center for Automation Research, UMIACS, University of Maryland, College Park), Jun-Cheng Chen (Research Center for Information Technology Innovation, Academia Sinica), and Rama Chellappa (Center for Automation Research, UMIACS, University of Maryland, College Park)	2648
Fast Unsupervised Anomaly Detection in Traffic Videos	2658
The 4th Al City Challenge	2665

OmniCV: Omnidirectional Computer Vision in Research and Industry

Toward Real-World Panoramic Image Enhancement	5
A Deep Physical Model for Solar Irradiance Forecasting with Fisheye Images	5
Upright and Stabilized Omnidirectional Depth Estimation for Wide-Baseline Multi-camera Inertial Systems	9
ArUcOmni: Detection of Highly Reliable Fiducial Markers in Panoramic Images	3
RAPiD: Rotation-Aware People Detection in Overhead Fisheye Images	С
Unsupervised Learning of Metric Representations with Slow Features from Omnidirectional Views	Э

Deep Lighting Environment Map Estimation from Spherical Panoramas	719
WMF: Media Forensics	
Detecting CNN-Generated Facial Images in Real-World Scenarios	729
PipeNet: Selective Modal Pipeline of Fusion Network for Multi-modal Face Anti-Spoofing 27 Qing Yang (Intel, China), Xia Zhu (Intel, USA), Jong-Kae Fwu (Intel, USA), Yun Ye (Intel, China), Ganmei You (Intel, China), and Yuan Zhu (Intel, China)	739
The Role of 'Sign' and 'Direction' of Gradient on the Performance of CNN	748
Adversarial Attack on Deep Learning-Based Splice Localization	757
Multi-modal Face Anti-Spoofing Based on Central Difference Networks	⁷ 66
Fake News Detection Using Higher-Order User to User Mutual-Attention Progression in Propagation Paths	775
Towards Untrusted Social Video Verification to Combat Deepfakes via Face Geometry Consistency	784
OC-FakeDect: Classifying Deepfakes Using One-Class Variational Autoencoder	794

Evading Deepfake-Image Detectors with White- and Black-Box Attacks	2804
Detecting Deep-Fake Videos from Phoneme-Viseme Mismatches Shruti Agarwal (University of California, Berkeley, Berkeley, CA, USA), Hany Farid (University of California, Berkeley, Berkeley, CA, USA), Ohad Fried (Stanford University, Stanford, CA, USA), and Maneesh Agrawala (Stanford University, Stanford, CA, USA)	2814
Forgery Detection in Hyperspectral Document Images Using Graph Orthogonal Nonnegative Matrix Factorization	2823
Manipulation Detection in Satellite Images Using Deep Belief Networks	2832
DeepFake Detection by Analyzing Convolutional Traces	2841
Deepfakes Detection with Automatic Face Weighting Daniel Mas Montserrat (Purdue University, USA), Hanxiang Hao (Purdue University, USA), Sri K. Yarlagadda (Purdue University, USA), Sriram Baireddy (Purdue University, USA), Ruiting Shao (Purdue University, USA), János Horváth (Purdue University, USA), Emily Bartusiak (Purdue University, USA), Justin Yang (Purdue University, USA), David Güera (Purdue University, USA), Fengqing Zhu (Purdue University, USA), and Edward J. Delp (Purdue University, USA)	2851
Detecting Video Speed Manipulation	2860
Detecting GANs and Retouching Based Digital Alterations via DAD-HCNN	2870
EDLCV: Efficient Deep Learning for Computer Vision	
BAMSProd: A Step Towards Generalizing the Adaptive Optimization Methods to Deep Binary Model	2880

Dynamic Inference: A New Approach Toward Efficient Video Action Recognition	2890
Learning Low-Rank Deep Neural Networks via Singular Vector Orthogonality Regularization and Singular Value Sparsification	2899
Low-Bit Quantization Needs Good Distribution	2909
Attentive Semantic Preservation Network for Zero-Shot Learning	2919
Mimic the Raw Domain: Accelerating Action Recognition in the Compressed Domain	2926
Constraint-Aware Importance Estimation for Global Filter Pruning Under Multiple Resource Constraints	2935
FoNet: A Memory-Efficient Fourier-Based Orthogonal Network for Object Recognition	N/A

Computer-Aided Diagnosis System of Lung Carcinoma Using Convolutional Neural Networks 2953
Fangjian Han (Lensee Bio-Technology Co.Ltd., Ningbo, China), Li Yu (Lensee Bio-Technology Co.Ltd., Ningbo, China), and Yi Jiang (2^nd Xiangya Hospital of Central South University, Changsha, China)
Fast Hardware-Aware Neural Architecture Search
Learning Sparse Neural Networks Through Mixture-Distributed Regularization
LSQ+: Improving Low-Bit Quantization Through Learnable Offsets and Better Initialization 2978 Yash Bhalgat (Qualcomm AI Research, Qualcomm Technologies, Inc.), Jinwon Lee (Qualcomm AI Research, Qualcomm Technologies, Inc.), Markus Nagel (Qualcomm AI Research, Qualcomm Technologies Netherlands B.V.), Tijmen Blankevoort (Qualcomm AI Research, Qualcomm Technologies Netherlands B.V.), and Nojun Kwak (Seoul National University)
Least Squares Binary Quantization of Neural Networks
RefineDetLite: A Lightweight One-Stage Object Detection Framework for CPU-Only Devices 2997 Chen Chen (Tencent TEG AI), Mengyuan Liu (Tencent TEG AI), Xiandong Meng (The Hong Kong University of Science and Technology), Wanpeng Xiao (Tencent TEG AI), and Qi Ju (Tencent TEG AI)
Randaugment: Practical Automated Data Augmentation with a Reduced Search Space 3008 Ekin D. Cubuk (Google Research, Brain Team), Barret Zoph (Google Research, Brain Team), Jonathon Shlens (Google Research, Brain Team), and Quoc V. Le (Google Research, Brain Team)
Any-Width Networks
AdaMT-Net: An Adaptive Weight Learning Based Multi-task Learning Model for Scene Understanding
Ternary MobileNets via Per-Layer Hybrid Filter Banks

Yoojin Choi (SoC R&D, Samsung Semiconductor Inc., San Diego, CA), Jihwan Choi (DGIST, Korea), Mostafa El-Khamy (SoC R&D, Samsung Semiconductor Inc., San Diego, CA), and Jungwon Lee (SoC R&D, Samsung Semiconductor Inc., San Diego, CA)
Now That I Can See, I Can Improve: Enabling Data-Driven Finetuning of CNNs on the Edge 3058 Aditya Rajagopal (Imperial College London) and Christos-Savvas Bouganis (Imperial College London)
Structured Weight Unification and Encoding for Neural Network Compression and Acceleration 3068
Wei Jiang (Tencent America LLC., Palo Alto, CA), Wei Wang (Tencent America LLC., Palo Alto, CA), and Shan Liu (Tencent America LLC., Palo Alto, CA)
Neural Network Compression Using Higher-Order Statistics and Auxiliary Reconstruction Losses
Papadopoulos (Information Technologies Institute, Centre for Research and Technology Hellas, Greece), Kosmas Dimitropoulos (Information Technologies Institute, Centre for Research and Technology Hellas, Greece), and Petros Daras (Information Technologies Institute, Centre for Research and Technology Hellas, Greece)
Monte Carlo Gradient Quantization
Dithered Backprop: A Sparse and Quantized Backpropagation Algorithm for More Efficient Deep Neural Network Training
Learning Sparse & Ternary Neural Networks With Entropy-Constrained Trained Ternarization (EC2T)
Intelligent Scene Caching to Improve Accuracy for Energy-Constrained Embedded Vision 3114 Benjamin Simpson (University of Michigan), Ekdeep Lubana (University of Michigan), Yuchen Liu (University of Michigan), and Robert Dick (University of Michigan)

Adaptive Posit: Parameter Aware Numerical Format for Deep Learning Inference on the Edge 3123

Hamed F. Langroudi (Neuromorphic AI Lab, University of Texas at San Antonio, TX, USA; Rochester Institute of Technology, NY, USA), Vedant Karia (Neuromorphic AI Lab, University of Texas at San Antonio, TX, USA), John L. Gustafson (National University of Singapore, Singapore), and Dhireesha Kudithipudi (Neuromorphic AI Lab, University of Texas at San Antonio, TX, USA)

ISIC: Skin Image Analysis

	ve Skin Lesion Segmentation in Dermoscopic Images
3132 Kumar Abhishek (School of Computing Scie Canada), Ghassan Hamarneh (School of C University, Canada), and Mark S. Drew (Sci Simon Fraser University, Canada)	ence, Simon Fraser University, omputing Science, Simon Fraser hool of Computing Science,
Meta-DermDiagnosis: Few-Shot Skin Diseas Kushagra Mahajan (TCS Research, New De Research, New Delhi, India), and Lovekesh Delhi, India)	
On Out-of-Distribution Detection Algorithm Andre G. C. Pacheco (Federal University of Brazil), Chandramouli S. Sastry (Dalhousie Canada; Vector Institute - Toronto, Canada (Dalhousie University - Halifax, Canada), S University - Halifax, Canada; Vector Institu Renato A. Krohling (Federal University of Ederail)	University - Halifax, a), Thomas Trappenberg ageev Oore (Dalhousie te - Toronto, Canada), and
Interpreting Mechanisms of Prediction for S Davide Coppola (Bioinformatics Institute, A Kuan Lee (Bioinformatics Institute, A*STAR Guan (NTU, Singapore)	
	earch), Susan Huang (n/a),
Less Is More: Sample Selection and Label C Vinicius Ribeiro (School of Electrical and Co (FEEC)), Sandra Avila (Institute of Compution University of Campinas (UNICAMP), Brazil) of Electrical and Computing Engineering (F	ng(lC) RECOD Lab., , and Eduardo Valle (School
Debiasing Skin Lesion Datasets and Models Alceu Bissoto (Institute of Computing (IC)), Electrical and Computing Engineering (FEE Campinas (UNICAMP), Brazil), and Sandra (IC))	Eduardo Valle (School of C) RECOD Lab., University of

Catarina Barata (Institute for Systems and Robotics, Lisbon, Portugal) and Carlos Santiago (Institute for Systems and Robotics, Lisbon, Portugal)
Uncertainty Estimation in Deep Neural Networks for Dermoscopic Image Classification321 Marc Combalia (Hospital Clínic de Barcelona, Barcelona, Spain), Ferran Hueto (Massachusetts Institute of Technology, Boston, EEUU), Susana Puig (Hospital Clínic de Barcelona, Barcelona, Spain), Josep Malvehy (Hospital Clínic de Barcelona, Barcelona, Spain), and Verónica Vilaplana
Learning a Meta-Ensemble Technique for Skin Lesion Classification and Novel Class
Detection
DV: DeepVision
Homogeneous Linear Inequality Constraints for Neural Network Activations
University of Munich) SUW-Learn: Joint Supervised, Unsupervised, Weakly Supervised Deep Learning for Monocular
University of Munich)
University of Munich) SUW-Learn: Joint Supervised, Unsupervised, Weakly Supervised Deep Learning for Monocular Depth Estimation
University of Munich) SUW-Learn: Joint Supervised, Unsupervised, Weakly Supervised Deep Learning for Monocular Depth Estimation

SmoothMix: A Simple Yet Effective Data Augmentation to Train Robust Classifiers	3264
S2LD: Semi-Supervised Landmark Detection in Low-Resolution Images and Impact on Face Verification Amit Kumar (Center for Automation Research, UMIACS, University of Maryland, College Park) and Rama Chellappa (Center for Automation Research, UMIACS, University of Maryland, College Park)	3275
P2L: Predicting Transfer Learning for Images and Semantic Relations Bishwaranjan Bhattacharjee (IBM T.J. Watson Research Center), John R. Kender (Columbia University), Matthew Hill (IBM T.J. Watson Research Center), Parijat Dube (IBM T.J. Watson Research Center), Siyu Huo (IBM T.J. Watson Research Center), Michael R. Glass (IBM T.J. Watson Research Center), Brian Belgodere (IBM T.J. Watson Research Center), Sharath Pankanti (IBM T.J. Watson Research Center), Noel Codella (IBM T.J. Watson Research Center), and Patrick Watson (Minerva Project)	. 3284
Semi-Supervised Learning with Scarce Annotations	3294
Spatio-Temporal Action Detection and Localization Using a Hierarchical LSTM	. 3303
Can We Learn Heuristics for Graphical Model Inference Using Reinforcement Learning? Safa Messaoud (University of Illinois at Urbana-Champaign), Maghav Kumar (University of Illinois at Urbana-Champaign), and Alexander G. Schwing (University of Illinois at Urbana-Champaign)	3313
Distilling Knowledge From Refinement in Multiple Instance Detection Networks Luis Felipe Zeni (Institute of Informatics, Federal University of Rio Grande do Sul, Brazil) and Claudio R. Jung (Institute of Informatics, Federal University of Rio Grande do Sul, Brazil)	3324
Robust One Shot Audio to Video Generation	3334

Deflating Dataset Bias Using Synthetic Data Augmentation	3344
Nikita Jaipuria (Ford Greenfield Labs, Palo Alto), Xianling Zhang (Ford	
Greenfield Labs, Palo Alto), Rohan Bhasin (Ford Greenfield Labs, Palo	
Alto), Mayar Arafa (Ford Greenfield Labs, Palo Alto), Punarjay	
Chakravarty (Ford Greenfield Labs, Palo Alto), Shubham Shrivastava	
(Ford Greenfield Labs, Palo Alto), Sagar Manglani (Ford Greenfield Labs,	
Palo Alto), and Vidya N. Murali (Ford Greenfield Labs, Palo Alto)	

AML-CV: Adversarial Machine Learning in Computer Vision

Filters	. 3354
Learning Ordered Top-k Adversarial Attacks via Adversarial Distillation	. 3364
Adversarial Fooling Beyond "Flipping the Label"	3374
Improving the Affordability of Robustness Training for DNNs	3383
A Cyclically-Trained Adversarial Network for Invariant Representation Learning Jiawei Chen (Boston University), Janusz Konrad (Boston University), and Prakash Ishwar (Boston University)	3393
Role of Spatial Context in Adversarial Robustness for Object Detection Aniruddha Saha (University of Maryland, Baltimore County), Akshayvarun Subramanya (University of Maryland, Baltimore County), Koninika Patil (University of Maryland, Baltimore County), and Hamed Pirsiavash (University of Maryland, Baltimore County)	3403
Extensions and Limitations of Randomized Smoothing for Robustness Guarantees	3413
Systematic Evaluation of Backdoor Data Poisoning Attacks on Image Classifiers Loc Truong (Western Washington University), Chace Jones (Western Washington University), Brian Hutchinson (Western Washington University; Pacific Northwest National Laboratory), Andrew August (Pacific Northwest National Laboratory), Brenda Praggastis (Pacific Northwest National Laboratory), Robert Jasper (Pacific Northwest National Laboratory), Nicole Nichols (Pacific Northwest National Laboratory), and Aaron Tuor (Pacific Northwest National Laboratory)	3422

Probing for Artifacts: Detecting Imagenet Model Evasions	2
Robust Assessment of Real-World Adversarial Examples	2
Vulnerability of Person Re-Identification Models to Metric Adversarial Attacks	0
Live Trojan Attacks on Deep Neural Networks	0
Biometrics	
On Improving the Generalization of Face Recognition in the Presence of Occlusions	0
Latent Fingerprint Image Enhancement Based on Progressive Generative Adversarial Network \dots 3481	
Xijie Huang (Department of Instrument Science and Engineering, School of EIEE, Shanghai Jiao Tong University, Shanghai, China), Peng Qian (Department of Instrument Science and Engineering, School of EIEE, Shanghai Jiao Tong University, Shanghai, China), and Manhua Liu (Department of Instrument Science and Engineering, School of EIEE, Shanghai Jiao Tong University, Shanghai, China)	
Domain Agnostic Feature Learning for Image and Video Based Face Anti-Spoofing	0
Triple-GAN: Progressive Face Aging with Triple Translation Loss	0

Plastic Surgery: An Obstacle for Deep Face Recognition? Christian Rathgeb (da/sec – Biometrics and Internet Security Research Group, Hochschule Darmstadt, Germany), Didem Dogan (da/sec – Biometrics and Internet Security Research Group, Hochschule Darmstadt, Germany), Fabian Stockhardt (da/sec – Biometrics and Internet Security Research Group, Hochschule Darmstadt, Germany), Maria De Marsico (Dipartimento di Informatica, Sapienza Università di Roma, Italy), and Christoph Busch (da/sec – Biometrics and Internet Security Research Group, Hochschule Darmstadt, Germany)	3510
Offline Signature Verification on Real-World Documents Deniz Engin (Yapı Kredi Technology), Alperen Kantarcı (Istanbul Technical University), Seçil Arslan (Yapı Kredi Technology), and Hazım Kemel Ekenel (Istanbul Technical University)	3518
FEHash: Full Entropy Hash for Face Template Protection Thao M. Dang (Chonnam National University, Gwangju, South Korea), Lam Tran (Chonnam National University, Gwangju, South Korea), Thuc D. Nguyen (University of Science, VNU-HCMC, Vietnam), and Deokjai Choi (Chonnam National University, Gwangju, South Korea)	3527
Defending Black Box Facial Recognition Classifiers Against Adversarial Attacks	3537
Adversarial Light Projection Attacks on Face Recognition Systems: A Feasibility Study	3548
Seamless Payment System Using Face and Low-Energy Bluetooth	3557
Seeing Red: PPG Biometrics Using Smartphone Cameras Giulio Lovisotto (University of Oxford, UK), Henry Turner (University of Oxford, UK), Simon Eberz (University of Oxford, UK), and Ivan Martinovic (University of Oxford, UK)	3565
Quality Guided Sketch-to-Photo Image Synthesis	3575
An A-Contrario Biometric Fusion Approach Luis Di Martino (IIE, Universidad de la Rep´ublica, Uruguay; Digital Sense, Uruguay), Javier Preciozzi (IIE, Universidad de la Rep´ublica, Uruguay; Digital Sense, Uruguay), Rafael Grompone von Gioi (Centre Borelli, ENS Paris-Saclay, Universit´e Paris-Saclay, France), Guillermo Garella (IIE, Universidad de la Rep´ublica, Uruguay; Digital Sense, Uruguay), Alicia Fernández (IIE, Universidad de la Rep´ublica, Uruguay), and Federico Lecumberry (IIE, Universidad de la Rep´ublica, Uruguay)	3585

Class-Balanced Training for Deep Face Recognition	1
A Comprehensive Study on Loss Functions for Cross-Factor Face Recognition	1
Fold Electrocardiogram Into a Fingerprint	<u> </u>
When Person Re-Identification Meets Changing Clothes)
Diff-CVML: Differential Geometry in Computer Vision and Machin Learning	e
Learning Representations, Metrics and Statistics for Shape Analysis of Elastic Graphs)

Classification	3659
Hongjun Choi (Geometric Media Lab, School of Arts, Media and Engineering, Arizona State University; School of Electrical, Computer and Energy Engineering, Arizona State University), Anirudh Som (Geometric Media Lab, School of Arts, Media and Engineering, Arizona State University; School of Electrical, Computer and Energy Engineering, Arizona State University), and Pavan Turaga (Geometric Media Lab, School of Arts, Media and Engineering, Arizona State University; School of Electrical, Computer and Energy Engineering, Arizona State University)	
Smooth Summaries of Persistence Diagrams and Texture Classification	3667
Gromov-Wasserstein Averaging in a Riemannian Framework	3676
The Weighted Euler Curve Transform for Shape and Image Analysis	3685
An Interface Between Grassmann Manifolds and Vector Spaces Lincon S. Souza (Graduate School of Science and Technology, University of Tsukuba), Naoya Sogi (Graduate School of Science and Technology, University of Tsukuba), Bernardo B. Gatto (Center for Artificial Intelligence Research (C-AIR), University of Tsukuba), Takumi Kobayashi (National Institute of Advanced Industrial Science and Technology (AIST)), and Kazuhiro Fukui (Graduate School of Science and Technology, University of Tsukuba; Center for Artificial Intelligence Research (C-AIR), University of Tsukuba)	3695
Simplifying Transformations for a Family of Elastic Metrics on the Space of Surfaces Zhe Su (Department of Mathematics, Florida State University, Tallahassee, FL), Martin Bauer (Department of Mathematics, Florida State University, Tallahassee, FL), Eric Klassen (Department of Mathematics, Florida State University, Tallahassee, FL), and Kyle Gallivan (Department of Mathematics, Florida State University, Tallahassee, FL)	3705
Metric Learning with A-Based Scalar Product for Image-Set Recognition Naoya Sogi (Graduate School of Science and Technology, University of Tsukuba), Lincon S. Souza (Graduate School of Science and Technology, University of Tsukuba), Bernardo B. Gatto (Center for Artificial Intelligence Research (C-AIR), University of Tsukuba), and Kazuhiro Fukui (Graduate School of Science and Technology, University of Tsukuba; Center for Artificial Intelligence Research (C-AIR), University of Tsukuba)	3715

A Geometric ConvNet on 3D Shape Manifold for Gait Recognition
A Generic Unfolding Algorithm for Manifolds Estimated by Local Linear Approximations 3735 Jonas Nordhaug Myhre (UiT the Arctic University of Norway), Matineh Shaker (Microsoft AI & Research), Mustafa Devrim Kaba (Johns Hopkins University), Robert Jenssen (UiT the Arctic University of Norway), and Deniz Erdogmus (Northeastern University)
Persistent Homology-Based Projection Pursuit
Curvature: A Signature for Action Recognition in Video Sequences
Coarse-to-Fine Hamiltonian Dynamics of Hierarchical Flows in Computational Anatomy 3760 Michael I. Miller (Johns Hopkins University, USA), Daniel J. Tward (Johns Hopkins University, USA), and Alain Trouvé (Ecole Normale Superieure, France)
Infinitesimal Drift Diffeomorphometry Models for Population Shape Analysis
Deep Low-Rank Subspace Clustering
Deep Learning of Warping Functions for Shape Analysis
UG2: Bridging the Gap Between Computational Photography and Visual Recognition
Focus Longer to See Better: Recursively Refined Attention for Fine-Grained Image Classification
Color-Constrained Dehazing Model

VDFlow: Joint Learning for Optical Flow and Video Deblurring	3808
A Point Light Source Interference Removal Method for Image Dehazing	3817
CVSports: Computer Vision in Sports	
Utilizing Mask R-CNN for Waterline Detection in Canoe Sprint Video Analysis Marie-Sophie von Braun (Laboratory for Biosignal Processing Leipzig University of Applied Sciences), Patrick Frenzel (Laboratory for Biosignal Processing Leipzig University of Applied Sciences), Christian Käding (Institute for Applied Training Science Leipzig), and Mirco Fuchs (Laboratory for Biosignal Processing Leipzig University of Applied Sciences)	3826
VR Alpine Ski Training Augmentation Using Visual Cues of Leading Skier	3836
Multimodal and Multiview Distillation for Real-Time Player Detection on a Football Field 3 Anthony Cioppa (University of Liège), Adrien Deliège (University of Liège), Noor Ul Huda (Aalborg University), Rikke Gade (Aalborg University), Marc Van Droogenbroeck (University of Liège), and Thomas B. Moeslund (Aalborg University)	3846
Event Detection in Coarsely Annotated Sports Videos via Parallel Multi-receptive Field 1D Convolutions	3856
TTNet: Real-Time Temporal and Spatial Video Analysis of Table Tennis	3866
Using Player's Body-Orientation to Model Pass Feasibility in Soccer Adrià Arbués-Sangüesa (Universitat Pompeu Fabra), Adrian Martín (Universitat Pompeu Fabra), Javier Fernández (Futbol Club Barcelona), Coloma Ballester (Universitat Pompeu Fabra), and Gloria Haro (Universitat Pompeu Fabra)	3875

A Non-Invasive Vision-Based Approach to Velocity Measurement of Skeleton Training
A System for Acquisition and Modelling of Ice-Hockey Stick Shape Deformation From Player Shot Videos
Decoupling Video and Human Motion: Towards Practical Event Detection in Athlete Recordings 3901 Moritz Einfalt (University of Augsburg, Augsburg, Germany) and Rainer Lienhart (University of Augsburg, Augsburg, Germany)
As Seen on TV: Automatic Basketball Video Production Using Gaussian-Based Actionness and Game States Recognition
Improved Soccer Action Spotting Using Both Audio and Video Streams
Group Activity Detection From Trajectory and Video Data in Soccer
FALCONS: FAst Learner-Grader for CONtorted Poses in Sports
VL3W: Visual Learning With Limited Labels: Zero-Shot, Few-Shot, Any-Shot, and Cross-Domain Few-Shot Learning
Activity-Aware Attributes for Zero-Shot Driver Behavior Recognition

Diagnosing Rarity in Human-Object Interaction Detection	3956
Pose-Guided Knowledge Transfer for Object Part Segmentation Shujon Naha (Luddy School of Informatics, Computing, and Engineering, Indiana University), Qingyang Xiao (Luddy School of Informatics, Computing, and Engineering, Indiana University), Prianka Banik (Luddy School of Informatics, Computing, and Engineering, Indiana University), Md Alimoor Reza (Luddy School of Informatics, Computing, and Engineering, Indiana University), and David J. Crandall (Luddy School of Informatics, Computing, and Engineering, Indiana University)	3961
MA3: Model Agnostic Adversarial Augmentation for Few Shot Learning	3966
ePillID Dataset: A Low-Shot Fine-Grained Benchmark for Pill Identification	3971
Image2Audio: Facilitating Semi-Supervised Audio Emotion Recognition with Facial Expression Image	
Auto-Annotation Quality Prediction for Semi-Supervised Learning with Ensembles	3984
CLAREL: Classification via Retrieval Loss for Zero-Shot Learning	3989
Unsupervised Batch Normalization	3994
Take the Scenic Route: Improving Generalization in Vision-and-Language Navigation	4000
An Embarrassingly Simple Baseline to One-Shot Learning	4005

Towards Fine-Grained Sampling for Active Learning in Object Detection	10
Zero-Shot Learning in the Presence of Hierarchically Coarsened Labels	15
Cross-Domain Knowledge Transfer for Prediction of Chemosensitivity in Ovarian Cancer Patients	20
Selecting Auxiliary Data Using Knowledge Graphs for Image Classification With Limited Labels	26
Relative Position and Map Networks in Few-Shot Learning for Image Classification	32
Any-Shot Sequential Anomaly Detection in Surveillance Videos	37
Alleviating Semantic-Level Shift: A Semi-Supervised Domain Adaptation Method for Semantic Segmentation	13
Self-Supervised Learning of Local Features in 3D Point Clouds	18
A Simple Discriminative Dual Semantic Auto-Encoder for Zero-Shot Classification	53

ViSeR: Visual Self-Regularization	4058
Context-Guided Super-Class Inference for Zero-Shot Detection Yanan Li (Artificial Intelligence Institute, Zhejiang Lab), Yilan Shao (Artificial Intelligence Institute, Zhejiang Lab), and Donghui Wang (Artificial Intelligence Institute, Zhejiang Lab)	4064
Rethinking Segmentation Guidance for Weakly Supervised Object Detection Ke Yang (Artificial Intelligence Research Center, National Innovation Institute of Defense Technology, China), Peng Zhang (National University of Defense Technology, China), Peng Qiao (National University of Defense Technology, China), Zhiyuan Wang (Artificial Intelligence Research Center, National Innovation Institute of Defense Technology, China), Huadong Dai (Artificial Intelligence Research Center, National Innovation Institute of Defense Technology, China), Tianlong Shen (Artificial Intelligence Research Center, National Innovation Institute of Defense Technology, China), Dongsheng Li (National University of Defense Technology, China), and Yong Dou (National University of Defense Technology, China)	4069
MULWS: Multimodal Learning	
CPARR: Category-Based Proposal Analysis for Referring Relationships	4074
Improved Active Speaker Detection Based on Optical Flow	4084
Interactive Video Retrieval with Dialog	4091
Self-Supervised Object Detection and Retrieval Using Unlabeled Videos	4100
Quality and Relevance Metrics for Selection of Multimodal Pretraining Data	4109
Multi-modal Dense Video Captioning	4117

Cross-Modal Variational Alignment of Latent Spaces Thomas Theodoridis (Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece), Theocharis Chatzis (Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece), Vassilios Solachidis (Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece), Kosmas Dimitropoulos (Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece), and Petros Daras (Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece)	4127
Exploring Phrase Grounding Without Training: Contextualisation and Extension to Text-Base Image Retrieval	
Heidelberg University) Classification-Aware Semi-Supervised Domain Adaptation	. 4147
CVMI: Computer Vision for Microscopy Image Analysis Analyzing U-Net Robustness for Single Cell Nucleus Segmentation From Phase Contrast Image	ges
4157 Chenyi Ling (Software and Systems Division, Information Technology Lab, NIST), Michael Majurski (Software and Systems Division, Information Technology Lab, NIST), Michael Halter (Material Measurement Lab, NIST), Jeffrey Stinson (Material Measurement Lab, NIST), Anne Plant (Material Measurement Lab, NIST), and Joe Chalfoun (Software and Systems Division, Information Technology Lab, NIST)	
Celeganser: Automated Analysis of Nematode Morphology and Age Linfeng Wang (University of California, Irvine), Shu Kong (Carnegie Mellon University), Zachary Pincus (Washington University in St. Louis), and Charless Fowlkes (University of California, Irvine)	. 4164
Estimation of Orientation and Camera Parameters from Cryo-Electron Microscopy Images w Variational Autoencoders and Generative Adversarial Networks	
WISH: Efficient 3D Biological Shape Classification Through Willmore Flow and Spherical Harmonics Decomposition	. 4184
Feedback U-Net for Cell Image Segmentation	.4195

Multi-object Graph-Based Segmentation with Non-overlapping Surfaces	4204
Self-Supervised Feature Extraction for 3D Axon Segmentation	4213
Detection and Classification of Pollen Grain Microscope Images Sebastiano Battiato (University of Catania, Italy), Alessandro Ortis (University of Catania, Italy), Francesca Trenta (University of Catania, Italy), Lorenzo Ascari (University of Turin, Italy), Mara Politi (University of Turin, Italy), and Consolata Siniscalco (University of Turin, Italy)	4220
CTMC: Cell Tracking with Mitosis Detection Dataset Challenge	4228
A Web-Based Intelligence Platform for Diagnosis of Malaria in Thick Blood Smear Images: Case for a Developing Country	
A Topological Nomenclature for 3D Shape Analysis in Connectomics	4245
Representation Learning of Histopathology Images Using Graph Neural Networks	4254

A Topological Encoding Convolutional Neural Network for Segmentation of 3D Multiphoton Images of Brain Vasculature Using Persistent Homology	4262
Rapid Training Data Creation by Synthesizing Medical Images for Classification and Localization	. 4272
Content-Based Propagation of User Markings for Interactive Segmentation of Patterned Images	. 4280
Vedrana A. Dahl (Technical University of Denmark), Monica J. Emerson (Technical University of Denmark), Camilla H. Trinderup (Technical University of Denmark), and Anders B. Dahl (Technical University of Denmark)	
WAD: Autonomous Driving	
SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation	. 4289
Wasserstein Loss-Based Deep Object Detection Yuzhuo Han (School of Mathematical Sciences, Dalian University of Technology), Xiaofeng Liu (Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University), Zhenfei Sheng (College of Photonic and Electronic Engineering, Fujian Normal University), Yutao Ren (Wuhan University of Technology), Xu Han (Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University; John Hopkins Uniersity), Jane You (Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China), Risheng Liu (School of Software Technology and the International School of Information Science, Engineering, Dalian University of Technology), and Zhongxuan Luo (School of Mathematical Sciences, Dalian University of Technology)	. 4299
Learning Depth-Guided Convolutions for Monocular 3D Object Detection Mingyu Ding (The University of Hong Kong; Renmin University of China), Yuqi Huo (Renmin University of China; Beijing Key Laboratory of Big Data Management and Analysis Methods, China), Hongwei Yi (Peking University), Zhe Wang (SenseTime Research), Jianping Shi (SenseTime Research), Zhiwu Lu (Renmin University of China; Beijing Key Laboratory of Big Data Management and Analysis Methods, China), and Ping Luo (The University of Hong Kong)	. 4306
Feudal Steering: Hierarchical Learning for Steering Angle Prediction	. 4316

Qi Dai (Computer Vision Lab, ETH Zurich; Institute of Geodesy and Photogrammetry, ETH Zurich), Vaishakh Patil (Computer Vision Lab, ETH Zurich), Simon Hecker (Computer Vision Lab, ETH Zurich), Dengxin Dai (Computer Vision Lab, ETH Zurich), Luc Van Gool (Computer Vision Lab, ETH Zurich; VISICS, ESAT/PSI, KU Leuven), and Konrad Schindler (Computer Vision Lab, ETH Zurich; Institute of Geodesy and Photogrammetry, ETH Zurich)	4326
End-to-End Lane Marker Detection via Row-Wise Classification	4335
An Extensible Multi-sensor Fusion Framework for 3D Imaging	4344
Topometric Imitation Learning for Route Following Under Appearance Change Shaojun Cai (UISEE Technology Inc., China) and Yingjia Wan (Chinese Academy of Sciences, China)	4354
IMW: Image Matching: Local Features and Beyond	
iniv. illiage matching. Local reacures and beyond	
Two-Stage Discriminative Re-Ranking for Large-Scale Landmark Retrieval	4363
Two-Stage Discriminative Re-Ranking for Large-Scale Landmark Retrieval	
Two-Stage Discriminative Re-Ranking for Large-Scale Landmark Retrieval	
 Two-Stage Discriminative Re-Ranking for Large-Scale Landmark Retrieval	4371
 Two-Stage Discriminative Re-Ranking for Large-Scale Landmark Retrieval Shuhei Yokoo (University of Tsukuba), Kohei Ozaki (Preferred Networks, Inc.), Edgar Simo-Serra (Waseda University), and Satoshi lizuka (University of Tsukuba) Match or No Match: Keypoint Filtering Based on Matching Probability Alexandra I. Papadaki (Technical University Berlin, Computer Vision & Remote Sensing Department) and Ronny Hänsch (German Aerospace Center (DLR), Department SAR Technology) Precognition: Seeing Through the Future Multi-camera Trajectory Forecasting: Pedestrian Trajectory Prediction in a Network of Cameras Olly Styles (University of Warwick), Tanaya Guha (University of Warwick), Victor Sanchez (University of Warwick), and Alex Kot 	4371

Glaucoma Precognition: Recognizing Preclinical Visual Functional Signs of Glaucom Krati Gupta (School of Computing & Electrical Engineering, Indian Institute of Technology Mandi, Mandi, India; Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, USA), Anshul Thakur (School of Computing & Electrical Engineering, Indian Institute of Technology Mandi, Mandi, India), Michael Goldbaum (Department of Ophthalmology, University of California, San Diego, USA), and Siamak Yousefi (Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, USA; Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, USA)	ıa 4393
A Multimodal Predictive Agent Model for Human Interaction Generation	4402
SILA: An Incremental Learning Approach for Pedestrian Trajectory Prediction Golnaz Habibi (MIT), Nikita Jaipuria (Ford Motor Company), and Jonathan P. How (MIT)	4411
Anti-UAV: Catch UAVs That Want to Watch You: Detect Tracking of Unmanned Aerial Vehicle in the Wild	ion and
IPG-Net: Image Pyramid Guidance Network for Small Object Detection	4422
Real-Time Tracking with Stabilized Frame	4431
Effect of Annotation Errors on Drone Detection With YOLOv3 Aybora Koksal (Department of Electrical and Electronics Engineering, Center for Image Analysis (OGAM), Middle East Technical University, Ankara, Turkey), Kutalmis Gokalp Ince (Department of Electrical and Electronics Engineering, Center for Image Analysis (OGAM), Middle East Technical University, Ankara, Turkey), and Aydin Alatan (Department of Electrical and Electronics Engineering, Center for Image Analysis (OGAM), Middle East Technical University, Ankara, Turkey)	4439
A Real-Time Robust Approach for Tracking UAVs in Infrared Videos	4448

VUHCS: Towards Human-Centric Image/Video Synthesis and the Look-Into-Person Challenge

LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking	4456
Epipolar Transformer for Multi-view Human Pose Estimation	4466
Yoga-82: A New Dataset for Fine-Grained Classification of Human Poses Manisha Verma (Osaka University, Japan), Sudhakar Kumawat (Indian Institute of Technology Gandhinagar, India), Yuta Nakashima (Osaka University, Japan), and Shanmuganathan Raman (Indian Institute of Technology Gandhinagar, India)	4472
Fine-Grained Pointing Recognition for Natural Drone Guidance Oscar L. Barbed (DIIS-i3A, University of Zaragoza, Spain), Pablo Azagra (DIIS-i3A, University of Zaragoza, Spain), Lucas Teixeira (Vision for Robotics Lab, ETH Zurich, Switzerland), Margarita Chli (Vision for Robotics Lab, ETH Zurich, Switzerland), Javier Civera (DIIS-i3A, University of Zaragoza, Spain), and Ana C. Murillo (DIIS-i3A, University of Zaragoza, Spain)	4480
The MTA Dataset for Multi-target Multi-camera Pedestrian Tracking by Weighted Distance Aggregation	4489
Reposing Humans by Warping 3D Features	4499

Author Index