2020 International Conference
on Rebooting Computing
(ICRC)
ICRC 2020

Table of Contents

About ICRC 2020 .. viii
Message from the General Chair .. ix
Message from the Program Chairs .. x
Organizing Committee ... xi
Program Committee .. xii
Steering Committee ... xiv
Keynotes ... xv
Invited Speakers ... xix
Sponsors .. xxi

Adiabatic and Reversible Computing and Reliability

Reversible Computing with Fast, Fully Static, Fully Adiabatic CMOS .. 1
Michael P. Frank (Sandia National Laboratories), Robert W. Brocato (Sandia National Laboratories), Brian D. Tierney (Sandia National Laboratories), Nancy A. Missert (Sandia National Laboratories), and Alexander H. Hsia (Sandia National Laboratories)

Adiabatic Flip-Flop and SRAM Design for an Adiabatic Reversible Microprocessor .. 9
Rene Celis-Cordova (University of Notre Dame), Alexei O. Orlov (University of Notre Dame), Gregory L. Snider (University of Notre Dame), Tian Lu (Indiana Integrated Circuits LLC), and Jason M. Kulick (Indiana Integrated Circuits LLC)

Why Reliability for Computing Needs Rethinking .. 16
Valeriu Beiu (“Aurel Vlaicu” University of Arad), Vlad-Florin Dragoi (“Aurel Vlaicu” University of Arad), and Roxana-Mariana Beiu (“Aurel Vlaicu” University of Arad)

Quantum Computing

Alien vs. Predator: Brain Inspired Sparse Coding Optimization on Neuromorphic and Quantum Devices .. 26
Kyle Henke (Los Alamos National Laboratory), Ben Migliori (Los Alamos National Laboratory), and Garrett T. Kenyon (Los Alamos National Laboratory)
Advanced Unembedding Techniques for Quantum Annealers 34
Elijah Pelofske (Los Alamos National Laboratory), Georg Hahn (Harvard University), and Hristo Djidjev (Los Alamos National Laboratory)

Adiabatic Circuits for Quantum Computer Control 42
Erik DeBenedictis (Zettaflops, LLC)

Quantum and Neuromorphic Computing

Cross Entropy Hyperparameter Optimization for Constrained Problem Hamiltonians Applied to QAOA 50
Christoph Roch (LMU Munich), Alexander Impertro (LMU Munich), Thomy Phan (LMU Munich), Thomas Gabor (LMU Munich), Sebastian Feld (LMU Munich), and Claudia Linnhoff-Popien (LMU Munich)

Tucker-1 Boolean Tensor Factorization with Quantum Annealers 58
Daniel O’Malley (Los Alamos National Laboratory), Hristo Djidjev (Los Alamos National Laboratory), and Boian Alexandrov (Los Alamos National Laboratory)

Understanding Quantum Control Processor Capabilities and Limitations through Circuit Characterization 66
Anastasiia Butko (Lawrence Berkeley National Laboratory), George Michelogiannakis (LBNL), Samuel Williams (LBNL), Costin Iancu (LBNL), David Donofrio (LBNL), John Shalf (LBNL), Jonathan Carter (LBNL), and Irfan Siddiqi (LBNL; University of California, Berkeley)

Classical Adiabatic Annealing in Memristor Crossbar Neural Networks for Combinatorial Optimization 76
Suhas Kumar (HP Labs), Thomas Van Vaerenbergh (HP Labs), and John Paul Strachan (HP Labs)

Rebooting Neuromorphic Design - A Complexity Engineering Approach 80
Natesh Ganesh (Applied & Computational Mathematics Division, NIST Boulder & University of Colorado, Boulder)

Neuromorphic Computing

Design Principles of Large-Scale Neuromorphic Systems Centered on High Bandwidth Memory 90
Bruno U. Pedroni (UC San Diego), Stephen R. Deiss (UC San Diego), Nishant Mysore (UC San Diego), and Geri Cauwenberghs (UC San Diego)

An Optical Accelerator for Deep Neural Network Based on Integrated Nanophotonics 95
Jun Shiomori (Graduate School of Informatics, Kyoto University), Tohru Ishihara (Graduate School of Informatics, Nagoya University), Hidetoshi Onodera (Graduate School of Informatics, Kyoto University), Akihiko Shinya (NTT Nanophotonics Center / NTT Basic Research Laboratories), and Masaya Notomi (NTT Nanophotonics Center / NTT Basic Research Laboratories)
Harnessing Adaptive Dynamics in Neuro-Memristive Nanowire Networks for Transfer Learning 102
Ruomin Zhu (University of Sydney, Australia), Joel Hochstetter (University of Sydney, Australia), Alon Loeffler (University of Sydney, Australia), Adrian Diaz-Alvarez (International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Japan), Adam Stieg (California NanoSystems Institute, University of California at Los Angeles, USA), James Gimzewski (California NanoSystems Institute, University of California at Los Angeles, USA), Tomonobu Nakayama (International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Japan), and Zdenka Kuncic (Sydney Nano Institute, University of Sydney, Australia)

Neuromorphic Computing, Neural Hardware and Photonics

Training Deep Neural Networks with Constrained Learning Parameters 107
Prasanna Date (Oak Ridge National Laboratory), Christopher D. Carothers (Oak Ridge National Laboratory), John E. Mitchell (Oak Ridge National Laboratory), James A. Hendler (Oak Ridge National Laboratory), and Malik Magdon-Ismail (Oak Ridge National Laboratory)

Reducing the Size of Spiking Convolutional Neural Networks by Trading Time for Space 116
James Plank (University of Tennessee, United States), Jinjia Zhao (University of Tennessee, United States), and Brent Hurst (University of Tennessee, United States)

Accelerating Simulation-Based Inference with Emerging AI Hardware 126
Sourabh Kulkarni (University of Massachusetts Amherst), Alexander Tsyplikhin (Graphcore), Mario Michael Krell (Graphcore), and Csaba Andras Mortiz (University of Massachusetts Amherst)

Virtualizing Analog Mesh Computers: The Case of a Photonic PDE Solving Accelerator 133
Jeff Anderson (The George Washington University), Engin Kayraklioglu (Cray, Inc.), Hamid Reza Imani (The George Washington University), Mario Miscuglio (The George Washington University), Volker J. Sorger (The George Washington University), and Tarek El-Ghazawi (The George Washington University)

Author Index 143