# 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC 2021)

Virtual Conference 18 – 21 January 2021



IEEE Catalog Number: CFP21ASP-POD ISBN: 978-1-7281-8057-1

# Copyright © 2021, Association for Computing Machinery (ACM) All Rights Reserved

\*\*\* This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP21ASP-POD

 ISBN (Print-On-Demand):
 978-1-7281-8057-1

 ISBN (Online):
 978-1-4503-7999-1

ISSN: 2153-6961

### Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com



# **ASP-DAC 2021**

# Contents

| Front Matter                                                                                                                     |    |
|----------------------------------------------------------------------------------------------------------------------------------|----|
| Welcome to ASP-DAC 2021                                                                                                          | X  |
| Message from the Technical Program Committee                                                                                     | X  |
| Organizing Committee                                                                                                             | κi |
| Technical Program Committee                                                                                                      | ii |
| University LSI Design Contest Committee                                                                                          | V  |
| Designers' Forum Committee                                                                                                       | vi |
| Steering Committee                                                                                                               | ii |
| University LSI Design Contest                                                                                                    | ii |
| Designers' Forum                                                                                                                 | X  |
| ACM SIGDA Student Research Forum at ASP-DAC 2021                                                                                 | X  |
| Best Paper Award                                                                                                                 | κi |
| University LSI Design Contest Award                                                                                              | ii |
| 10-Year Retrospective Most Influential Paper Award                                                                               | V  |
| Keynote Addresses                                                                                                                | V  |
| Invitation to ASP-DAC 2022                                                                                                       | ii |
| List of Reviewers (Regular topic)                                                                                                | ii |
| List of Reviewers (UDC)                                                                                                          | X  |
| Technical Program                                                                                                                |    |
| Session 1A: University Design Contest I                                                                                          |    |
| A DSM-based Polar Transmitter with 23.8% System Efficiency                                                                       | 1  |
| A 0.41W 34Gb/s 300GHz CMOS Wireless Transceiver                                                                                  | 3  |
| Capacitive Sensor Circuit with Relative Slope-Boost Method Based on a Relaxation Oscillator                                      | 5  |
| 28GHz Phase Shifter with Temperature Compensation for 5G NR Phased-array Transceiver                                             | 7  |
| An up to 35 dBc/Hz Phase Noise Improving Design Methodology for Differential-Ring-Oscillators Applied in Ultra-Low Power Systems | 9  |
| Gate Voltage Optimization in Capacitive DC-DC Converters for Thermoelectric Energy Harvesting 1                                  | 1  |
| An 0.57 GOPS/DSP Object Detection PIM Acceleratoron FPGA                                                                         | 3  |
| Supply Noise Reduction Filter for Parallel Integrated Transimpedance Amplifiers                                                  | 5  |

| Session 1B: Accelerating Design and Simulation                                                                                                                                                                              |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| A Fast Yet Accurate Message-level Communication Bus Model for Timing Prediction of SDFGs on MPSoC                                                                                                                           | 17  |
| Simulation of Ideally Switched Circuits in SystemC                                                                                                                                                                          | 23  |
| HW-BCP: A Custom Hardware Accelerator for SAT Suitable for Single Chip Implementation for Large Benchmarks                                                                                                                  | 29  |
| Session 1C: Process-in-Memory for Efficient and Robust AI                                                                                                                                                                   |     |
| A Novel DRAM-Based Process-in-Memory Architecture and its Implementation for CNNs                                                                                                                                           | 35  |
| A Quantized Training Framework for Robust and Accurate ReRAM-based Neural Network Accelerators                                                                                                                              | 43  |
| Attention-in-Memory for Few-Shot Learning with Configurable Ferroelectric FET Arrays                                                                                                                                        | 49  |
| Session 1D: Validation and Verification                                                                                                                                                                                     |     |
| Mutation-based Compliance Testing for RISC-V                                                                                                                                                                                | 55  |
| A General Equivalence Checking Framework for Multivalued Logic                                                                                                                                                              | 61  |
| ATLaS: Automatic Detection of Timing-based Information Leakage Flows for SystemC HLS Designs                                                                                                                                | 67  |
| Session 1E: Design Automation Methods for Various Microfluidic Platforms                                                                                                                                                    |     |
| A multi-commodity network flow based routing algorithm for paper-based digital microfluidic biochips                                                                                                                        | 73  |
| Interference-free Design Methodology for Paper-Based Digital Microfluidic Biochips                                                                                                                                          | 79  |
| Accurate and Efficient Simulation of Microfluidic Networks                                                                                                                                                                  | 85  |
| Session 2A: University Design Contest II                                                                                                                                                                                    |     |
| A 65nm CMOS Process Li-ion Battery Charging Cascode SIDO Boost Converter with 89% Maximum  Efficiency for RF Wireless Power Transfer Receiver                                                                               | 91  |
| A High Accuracy Phase and Amplitude Detection Circuit for Calibration of 28GHz Phased Array Beamformer System                                                                                                               | 93  |
| A Highly Integrated Energy-efficient CMOS Millimeter-wave Transceiver with Direct-modulation Digital Transmitter, Quadrature Phased-coupled Frequency Synthesizer and Substrate-Integrated Waveguide E-shaped Patch Antenna | 95  |
| A 3D-Stacked SRAM Using Inductive Coupling Technology for AI Inference Accelerator in 40-nm CMOS                                                                                                                            | 97  |
| Sub-10-μm Coil Design for Multi-Hop Inductive Coupling Interface                                                                                                                                                            | 99  |
| Current-Starved Chaotic Oscillator Over Multiple Frequency Decades on Low-Cost CMOS                                                                                                                                         | 101 |
| TCI tester: Tester for Through Chip Interface                                                                                                                                                                               | 103 |
| An 18 Bit Time-to-Digital Converter Design with Large Dynamic Range and Automated Multi-Cycle Concept                                                                                                                       | 105 |
|                                                                                                                                                                                                                             |     |

| Session 2B: Emerging Non-Volatile Processing-In-Memory for Next Generation Compu                                                             | ting  |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Connection-based Processing-In-Memory Engine Design Based on Resistive Crossbars                                                             | 107   |
| FePIM: Contention-Free In-Memory Computing Based on Ferroelectric Field-Effect Transistors                                                   | 114   |
| RIME: A Scalable and Energy-Efficient Processing-In-Memory Architecture for Floating-Point Operations                                        | 120   |
| A Non-Volatile Computing-In-Memory Framework With Margin Enhancement Based CSA and Offset Reduction Based ADC                                | 126   |
| Session 2C: Emerging Trends for Cross-Layer Co-Design: From Device, Circuit, to Artecture, Application                                       | chi-  |
| Cross-layer Design for Computing-in-Memory: From Devices, Circuits, to Architectures and Applications                                        | 132   |
| Session 2D: Machine Learning Techniques for EDA in Analog/Mixed-Signal ICs                                                                   |       |
| Automatic Surrogate Model Generation and Debugging of Analog/Mixed-Signal Designs Via Collaborative Stimulus Generation and Machine Learning | 140   |
| A Robust Batch Bayesian Optimization for Analog Circuit Synthesis via Local Penalization                                                     | 146   |
| Layout Symmetry Annotation for Analog Circuits with Graph Neural Networks                                                                    | 152   |
| Fast and Efficient Constraint Evaluation of Analog Layout using Machine Learning Models                                                      | 158   |
| Session 2E: Innovating Ideas in VLSI Routing Optimization                                                                                    |       |
| TreeNet: Deep Point Cloud Embedding for Routing Tree Construction                                                                            | 164   |
| A Unified Printed Circuit Board Routing Algorithm With Complicated Constraints and Differential Pair                                         | s 170 |
| Multi-FPGA Co-optimization: Hybrid Routing and Competitive-based Time Division Multiplexing Assignment                                       | 176   |
| Boosting Pin Accessibility Through Cell Layout Topology Diversification                                                                      | 183   |
| Session 3A: ML-Driven Approximate Computing                                                                                                  |       |
| Approximate Computing for ML: State-of-the-art, Challenges and Visions                                                                       | 189   |
| Session 3B: Architecture-Level Exploration                                                                                                   |       |
| Bridging the Frequency Gap in Heterogeneous 3D SoCs through Technology-Specific NoC Router Architectures                                     | 197   |
| Combining Memory Partitioning and Subtask Generation for Parallel Data Access on CGRAs                                                       | 204   |
| A Dynamic Link-latency Aware Cache Replacement Policy (DLRP)                                                                                 | 210   |
| Prediction of Register Instance Usage and Time-sharing Register for Extended Register Reuse Scheme                                           |       |
| Session 3C: Core Circuits for AI Accelerators                                                                                                |       |
| Residue-Net: Multiplication-free Neural Network by In-situ, No-loss Migration to Residue Number Systems                                      | 222   |

| A Multiple-Precision Multiply and Accumulation Design with Multiply-Add Merged Strategy for Accelerating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| DeepOpt: Optimized Scheduling of CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workload Systolic Deep Learning According to the CNN Wor | el-       |
| erators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 235       |
| Value-Aware Error Detection and Correction for SRAM Buffers in Low-Bitwidth, Floating-Point CN Accelerators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| Accelerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 212       |
| Session 3D: Stochastic and Approximate Computing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| MIPAC: Dynamic Input-Aware Accuracy Control for Dynamic Auto-Tuning of Iterative Approxima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ate       |
| Computing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 248       |
| Normalized Stability: A Cross-Level Design Metric for Early Termination in Stochastic Computing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 254     |
| Zero Correlation Error: A Metric for Finite-Length Bitstream Independence in Stochastic Computing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ng 260    |
| An Efficient Approximate Node Merging with an Error Rate Guarantee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 266       |
| Session 3E: Timing Analysis and Timing-Aware Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| An Adaptive Delay Model for Timing Yield Estimation under Wide-Voltage Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 272       |
| ATM: A High Accuracy Extracted Timing Model for Hierarchical Timing Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 278       |
| Mode-wise Voltage-scalable Design with Activation-aware Slack Assignment for Energy Minimiza                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion 284  |
| A Timing Prediction Framework for Wide Voltage Design with Data Augmentation Strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 291       |
| Session 4A: Technological Advancements inside the AI chips, and using the AI Chip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s         |
| Energy-Efficient Deep Neural Networks with Mixed-Signal Neurons and Dense-Local and Spars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| Global Connectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| Merged Logic and Memory Fabrics for AI Workloads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 305       |
| Vision Control Unit in Fully Self Driving Vehicles using Xilinx MPSoC and Opensource Stack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 311       |
| Session 4B: System-Level Modeling, Simulation, and Exploration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| Constrained Conservative State Symbolic Co-analysis for Ultra-low-power Embedded Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 318       |
| Arbitrary and Variable Precision Floating Point Arithmetic Support in Dynamic Binary Translation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 325       |
| Optimizing Temporal Decoupling using Event Relevance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 331       |
| Design Space Exploration of Heterogeneous-Accelerator SoCs with Hyperparameter Optimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 338       |
| Session 4C: Neural Network Optimizations for Compact AI Inference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| DNR: A Tunable Robust Pruning Framework Through Dynamic Network Rewiring of DNNs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 344       |
| DNR: A Tunable Robust Pruning Framework Through Dynamic Network Rewiring of DNNs  Dynamic Programming Assisted Quantization Approaches for Compressing Normal and Robust DN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IN        |
| Dynamic Programming Assisted Quantization Approaches for Compressing Normal and Robust DN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NN<br>351 |

| Session 4D: Brain-Inspired Computing                                                                                                  |      |
|---------------------------------------------------------------------------------------------------------------------------------------|------|
| Mixed Precision Quantization for ReRAM-based DNN Inference Accelerators                                                               | 372  |
| A reduced-precision streaming SpMV architecture for Personalized PageRank on FPGA                                                     | 378  |
| HyperRec: Efficient Recommender Systems with Hyperdimensional Computing                                                               | 384  |
| Efficient Techniques for Training the Memristor-based Spiking Neural Networks Targeting Better Speed, Energy and Lifetime             | 390  |
| Session 4E: Cross-Layer Hardware Security                                                                                             |      |
| PCBench: Benchmarking of Board-Level Hardware Attacks and Trojans                                                                     | 396  |
| Cache-Aware Dynamic Skewed Tree for Fast Memory Authentication                                                                        | 402  |
| Automated Test Generation for Hardware Trojan Detection using Reinforcement Learning                                                  | 408  |
| On the Impact of Aging on Power Analysis Attacks Targeting Power-Equalized Cryptographic Circuits                                     | 414  |
| Session 5B: Embedded Operating Systems and Information Retrieval                                                                      |      |
| Energy-Performance Co-Management of Mixed-Sensitivity Workloads on Heterogeneous Multi-core Systems                                   | 421  |
| Optimizing Inter-Core Data-Propagation Delays in Industrial Embedded Systems under Partitioned Scheduling                             | 428  |
| LiteIndex: Memory-Efficient Schema-Agnostic Indexing for JSON documents in SQLite                                                     |      |
| Session 5C: Security Issues in AI and Their Impacts on Hardware Security                                                              |      |
| Micro-architectural Cache Side-Channel Attacks and Countermeasures                                                                    | 441  |
| Security of Neural Networks from Hardware Perspective: A Survey and Beyond                                                            | 449  |
| Learning Assisted Side Channel Delay Test for Detection of Recycled ICs                                                               | 455  |
| ML-augmented Methodology for Fast Thermal Side-Channel Emission Analysis                                                              | 463  |
| Session 5D: Advances in Logic and High-level Synthesis                                                                                |      |
| 1 <sup>st</sup> -Order to 2 <sup>nd</sup> -Order Threshold Logic Gate Transformation with an Enhanced ILP-based Identification Method | 469  |
| A Novel Technology Mapper for Complex Universal Gates                                                                                 | 475  |
| High-Level Synthesis of Transactional Memory                                                                                          | 481  |
| Session 5E: Hardware-Oriented Threats and Solutions in Neural Networks                                                                |      |
| VADER: Leveraging the Natural Variation of Hardware to Enhance Adversarial Attack                                                     | 487  |
| Entropy-Based Modeling for Estimating Adversarial Bit-flip Attack Impact on Binarized Neural Network                                  | k493 |
| A Low Cost Weight Obfuscation Scheme for Security Enhancement of ReRAM Based Neural Network Accelerators                              | 499  |

| Session 6B: Advanced Optimizations for Embedded Systems                                                              |     |
|----------------------------------------------------------------------------------------------------------------------|-----|
| Puncturing the memory wall: Joint optimization of network compression with approximate memory for ASR application    | 505 |
| Canonical Huffman Decoder on Fine-grain Many-core Processor Arrays                                                   |     |
| A Decomposition-Based Synthesis Algorithm for Sparse Matrix-Vector Multiplication in Parallel                        |     |
| Communication Structure                                                                                              | 518 |
| Session 6C: Design and Learning of Logic Circuits and Systems                                                        |     |
| Learning Boolean Circuits from Examples for Approximate Logic Synthesis                                              | 524 |
| Read your Circuit: Leveraging Word Embedding to Guide Logic Optimization                                             | 530 |
| Exploiting HLS-Generated Multi-Version Kernels to Improve CPU-FPGA Cloud Systems                                     | 536 |
| Session 6D: Hardware Locking and Obfuscation                                                                         |     |
| Area Efficient Functional Locking through Coarse Grained Runtime Reconfigurable Architectures                        | 542 |
| ObfusX: Routing Obfuscation with Explanatory Analysis of a Machine Learning Attack                                   | 548 |
| Breaking Analog Biasing Locking Techniques via Re-Synthesis                                                          | 555 |
| Session 6E: Efficient Solutions for Emerging Technologies                                                            |     |
| Energy and QoS-Aware Dynamic Reliability Management of IoT Edge Computing Systems                                    | 561 |
| Light: A Scalable and Efficient Wavelength-Routed Optical Networks-On-Chip Topology                                  | 568 |
| One-Pass Synthesis for Field-coupled Nanocomputing Technologies                                                      | 574 |
| Session 7A: Platform-Specific Neural Network Acceleration                                                            |     |
| Real-Time Mobile Acceleration of DNNs: From Computer Vision to Medical Applications                                  | 581 |
| Dynamic Neural Network to Enable Run-Time Trade-off between Accuracy and Latency                                     | 587 |
| When Machine Learning Meets Quantum Computer: Network-Circuit Co-Design via Quantum-Aware Neural Architecture Search | 593 |
| Improving Efficiency in Neural Network Accelerator using Operands Hamming Distance Optimization                      |     |
| Lightweight Run-Time Working Memory Compression for Deployment of Deep Neural Networks on                            |     |
| Resource-Constrained MCUs                                                                                            | 607 |
| Session 7B: Toward Energy-Efficient Embedded Systems                                                                 |     |
| EHDSktch: A Generic Low Power Architecture for Sketching in Energy Harvesting Devices                                | 615 |
| Energy-Aware Design Methodology for Myocardial Infarction Detection on Low-Power Wearable Devices                    | 621 |
| Power-Efficient Layer Mapping for CNNs on Integrated CPU and GPU Platforms: A Case Study                             | 627 |
| A Write-friendly Arithmetic Coding Scheme for Achieving Energy-Efficient Non-Volatile Memory                         |     |
| Systems                                                                                                              | 633 |

| Session 7C: Software and System Support for Nonvolatile Memory                                                   |   |
|------------------------------------------------------------------------------------------------------------------|---|
| DP-Sim: A Full-stack Simulation Infrastructure for Digital Processing In-Memory Architectures 639                | 9 |
| SAC: A Stream Aware Write Cache Scheme for Multi-Streamed Solid State Drives                                     | 5 |
| Providing Plug N' Play for Processing-in-Memory Accelerators                                                     | 1 |
| Aging Aware Request Scheduling for Non-Volatile Main Memory                                                      | 7 |
| Session 7D: Learning-Driven VLSI Layout Automation Techniques                                                    |   |
| Placement for Wafer-Scale Deep Learning Accelerator                                                              | 5 |
| Net <sup>2</sup> : A Graph Attention Network Method Customized for Pre-Placement Net Length Estimation 67        | 1 |
| Machine Learning-based Structural Pre-route Insertability Prediction and Improvement with Guided Backpropagation | 8 |
| Standard Cell Routing with Reinforcement Learning and Genetic Algorithm in Advanced Technology  Nodes            |   |
| Session 7E: DNN-Based Physical Analysis and DNN Accelerator Design                                               |   |
| Thermal and IR Drop Analysis Using Convolutional Encoder-Decoder Networks 690                                    | 0 |
| GRA-LPO: Graph Convolution Based Leakage Power Optimization                                                      | 7 |
| DEF: Differential Encoding of Featuremaps for Low Power Convolutional Neural Network Accelerators 70.            | 3 |
| Temperature-Aware Optimization of Monolithic 3D Deep Neural Network Accelerators                                 | 9 |
| Session 8B: Embedded Neural Networks and File Systems                                                            |   |
| Gravity: An Artificial Neural Network Compiler for Embedded Applications                                         | 5 |
| A Self-Test Framework for Detecting Fault-induced Accuracy Drop in Neural Network Accelerators . 72              | 2 |
| Facilitating the Efficiency of Secure File Data and Metadata Deletion on SMR-based Ext4 File System 72           | 8 |
| Session 8C: Design Automation for Future Autonomy                                                                |   |
| Efficient Computing Platform Design for Autonomous Driving Systems                                               | 4 |
| On Designing Computing Systems for Autonomous Vehicles: a PerceptIn Case Study                                   | 2 |
| Runtime Software Selection for Adaptive Automotive Systems                                                       | 8 |
| Safety-Assured Design and Adaptation of Learning-Enabled Autonomous Systems                                      | 3 |
| Session 8D: Emerging Hardware Verification                                                                       |   |
| System-Level Verification of Linear and Non-Linear Behaviors of RF Amplifiers using Metamorphic Relations        | 1 |
| Random Stimuli Generation for the Verification of Quantum Circuits                                               | 7 |
| Exploiting Extended Krylov Subspace for the Reduction of Regular and Singular Circuit Models 77.                 | 3 |
| Session 8E: Optimization and Mapping Methods for Quantum Technologies                                            |   |
| Algebraic and Boolean Optimization Methods for AQFP Superconducting Circuits                                     | 9 |

| Dynamical Decomposition and Mapping of MPMCT Gates to Nearest Neighbor Architectures                                           | 786 |
|--------------------------------------------------------------------------------------------------------------------------------|-----|
| Exploiting Quantum Teleportation in Quantum Circuit Mapping                                                                    | 792 |
| Session 9B: Emerging System Architectures for Edge-AI                                                                          |     |
| Hardware-Aware NAS Framework with Layer Adaptive Scheduling on Embedded System                                                 | 798 |
| Dataflow-Architecture Co-Design for 2.5D DNN Accelerators using Wireless Network-on-Package .                                  | 806 |
| Block-Circulant Neural Network Accelerator Featuring Fine-Grained Frequency-Domain Quantization and Reconfigurable FFT Modules | 813 |
| BatchSizer: Power-Performance Trade-off for DNN Inference                                                                      | 819 |
| Session 9C: Cutting-Edge EDA Techniques for Advanced Process Technologies                                                      |     |
| Deep Learning for Mask Synthesis and Verification: A Survey                                                                    | 825 |
| Physical Synthesis for Advanced Neural Network Processors                                                                      | 833 |
| Advancements and Challenges on Parasitic Extraction for Advanced Process Technologies                                          | 841 |
| Session 9D: Robust and Reliable Memory Centric Computing at Post-Moore                                                         |     |
| Reliability-Aware Training and Performance Modeling for Processing-In-Memory Systems                                           | 847 |
| $Robustness\ of\ Neuromorphic\ Computing\ with\ RRAM-based\ Crossbars\ and\ Optical\ Neural\ Networks\ .$                      | 853 |
| Uncertainty Modeling of Emerging Device based Computing-in-Memory Neural Accelerators with                                     |     |
| Application to Neural Architecture Search                                                                                      |     |
| A Physical-Aware Framework for Memory Network Design Space Exploration                                                         | 865 |
| Session 9E: Design for Manufacturing and Soft Error Tolerance                                                                  |     |
| Manufacturing-Aware Power Staple Insertion Optimization by Enhanced Multi-Row Detailed Placement Refinement                    | 872 |
| A Hierarchical Assessment Strategy on Soft Error Propagation in Deep Learning Controller                                       | 878 |
| Attacking a CNN-based Layout Hotspot Detector Using Group Gradient Method                                                      | 885 |
| Bayesian Inference on Introduced General Region: An Efficient Parametric Yield Estimation Method for Integrated Circuits       | 892 |
| Analog IC Aging-induced Degradation Estimation via Heterogeneous Graph Convolutional Networks                                  | 898 |