2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC 2021) Virtual Conference 18 – 21 January 2021 IEEE Catalog Number: CFP21ASP-POD ISBN: 978-1-7281-8057-1 # Copyright © 2021, Association for Computing Machinery (ACM) All Rights Reserved *** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version. IEEE Catalog Number: CFP21ASP-POD ISBN (Print-On-Demand): 978-1-7281-8057-1 ISBN (Online): 978-1-4503-7999-1 ISSN: 2153-6961 ### Additional Copies of This Publication Are Available From: Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com # **ASP-DAC 2021** # Contents | Front Matter | | |--|----| | Welcome to ASP-DAC 2021 | X | | Message from the Technical Program Committee | X | | Organizing Committee | κi | | Technical Program Committee | ii | | University LSI Design Contest Committee | V | | Designers' Forum Committee | vi | | Steering Committee | ii | | University LSI Design Contest | ii | | Designers' Forum | X | | ACM SIGDA Student Research Forum at ASP-DAC 2021 | X | | Best Paper Award | κi | | University LSI Design Contest Award | ii | | 10-Year Retrospective Most Influential Paper Award | V | | Keynote Addresses | V | | Invitation to ASP-DAC 2022 | ii | | List of Reviewers (Regular topic) | ii | | List of Reviewers (UDC) | X | | Technical Program | | | Session 1A: University Design Contest I | | | A DSM-based Polar Transmitter with 23.8% System Efficiency | 1 | | A 0.41W 34Gb/s 300GHz CMOS Wireless Transceiver | 3 | | Capacitive Sensor Circuit with Relative Slope-Boost Method Based on a Relaxation Oscillator | 5 | | 28GHz Phase Shifter with Temperature Compensation for 5G NR Phased-array Transceiver | 7 | | An up to 35 dBc/Hz Phase Noise Improving Design Methodology for Differential-Ring-Oscillators Applied in Ultra-Low Power Systems | 9 | | Gate Voltage Optimization in Capacitive DC-DC Converters for Thermoelectric Energy Harvesting 1 | 1 | | An 0.57 GOPS/DSP Object Detection PIM Acceleratoron FPGA | 3 | | Supply Noise Reduction Filter for Parallel Integrated Transimpedance Amplifiers | 5 | | Session 1B: Accelerating Design and Simulation | | |---|-----| | A Fast Yet Accurate Message-level Communication Bus Model for Timing Prediction of SDFGs on MPSoC | 17 | | Simulation of Ideally Switched Circuits in SystemC | 23 | | HW-BCP: A Custom Hardware Accelerator for SAT Suitable for Single Chip Implementation for Large Benchmarks | 29 | | Session 1C: Process-in-Memory for Efficient and Robust AI | | | A Novel DRAM-Based Process-in-Memory Architecture and its Implementation for CNNs | 35 | | A Quantized Training Framework for Robust and Accurate ReRAM-based Neural Network Accelerators | 43 | | Attention-in-Memory for Few-Shot Learning with Configurable Ferroelectric FET Arrays | 49 | | Session 1D: Validation and Verification | | | Mutation-based Compliance Testing for RISC-V | 55 | | A General Equivalence Checking Framework for Multivalued Logic | 61 | | ATLaS: Automatic Detection of Timing-based Information Leakage Flows for SystemC HLS Designs | 67 | | Session 1E: Design Automation Methods for Various Microfluidic Platforms | | | A multi-commodity network flow based routing algorithm for paper-based digital microfluidic biochips | 73 | | Interference-free Design Methodology for Paper-Based Digital Microfluidic Biochips | 79 | | Accurate and Efficient Simulation of Microfluidic Networks | 85 | | Session 2A: University Design Contest II | | | A 65nm CMOS Process Li-ion Battery Charging Cascode SIDO Boost Converter with 89% Maximum Efficiency for RF Wireless Power Transfer Receiver | 91 | | A High Accuracy Phase and Amplitude Detection Circuit for Calibration of 28GHz Phased Array Beamformer System | 93 | | A Highly Integrated Energy-efficient CMOS Millimeter-wave Transceiver with Direct-modulation Digital Transmitter, Quadrature Phased-coupled Frequency Synthesizer and Substrate-Integrated Waveguide E-shaped Patch Antenna | 95 | | A 3D-Stacked SRAM Using Inductive Coupling Technology for AI Inference Accelerator in 40-nm CMOS | 97 | | Sub-10-μm Coil Design for Multi-Hop Inductive Coupling Interface | 99 | | Current-Starved Chaotic Oscillator Over Multiple Frequency Decades on Low-Cost CMOS | 101 | | TCI tester: Tester for Through Chip Interface | 103 | | An 18 Bit Time-to-Digital Converter Design with Large Dynamic Range and Automated Multi-Cycle Concept | 105 | | | | | Session 2B: Emerging Non-Volatile Processing-In-Memory for Next Generation Compu | ting | |--|-------| | Connection-based Processing-In-Memory Engine Design Based on Resistive Crossbars | 107 | | FePIM: Contention-Free In-Memory Computing Based on Ferroelectric Field-Effect Transistors | 114 | | RIME: A Scalable and Energy-Efficient Processing-In-Memory Architecture for Floating-Point Operations | 120 | | A Non-Volatile Computing-In-Memory Framework With Margin Enhancement Based CSA and Offset Reduction Based ADC | 126 | | Session 2C: Emerging Trends for Cross-Layer Co-Design: From Device, Circuit, to Artecture, Application | chi- | | Cross-layer Design for Computing-in-Memory: From Devices, Circuits, to Architectures and Applications | 132 | | Session 2D: Machine Learning Techniques for EDA in Analog/Mixed-Signal ICs | | | Automatic Surrogate Model Generation and Debugging of Analog/Mixed-Signal Designs Via Collaborative Stimulus Generation and Machine Learning | 140 | | A Robust Batch Bayesian Optimization for Analog Circuit Synthesis via Local Penalization | 146 | | Layout Symmetry Annotation for Analog Circuits with Graph Neural Networks | 152 | | Fast and Efficient Constraint Evaluation of Analog Layout using Machine Learning Models | 158 | | Session 2E: Innovating Ideas in VLSI Routing Optimization | | | TreeNet: Deep Point Cloud Embedding for Routing Tree Construction | 164 | | A Unified Printed Circuit Board Routing Algorithm With Complicated Constraints and Differential Pair | s 170 | | Multi-FPGA Co-optimization: Hybrid Routing and Competitive-based Time Division Multiplexing Assignment | 176 | | Boosting Pin Accessibility Through Cell Layout Topology Diversification | 183 | | Session 3A: ML-Driven Approximate Computing | | | Approximate Computing for ML: State-of-the-art, Challenges and Visions | 189 | | Session 3B: Architecture-Level Exploration | | | Bridging the Frequency Gap in Heterogeneous 3D SoCs through Technology-Specific NoC Router Architectures | 197 | | Combining Memory Partitioning and Subtask Generation for Parallel Data Access on CGRAs | 204 | | A Dynamic Link-latency Aware Cache Replacement Policy (DLRP) | 210 | | Prediction of Register Instance Usage and Time-sharing Register for Extended Register Reuse Scheme | | | Session 3C: Core Circuits for AI Accelerators | | | Residue-Net: Multiplication-free Neural Network by In-situ, No-loss Migration to Residue Number Systems | 222 | | A Multiple-Precision Multiply and Accumulation Design with Multiply-Add Merged Strategy for Accelerating | | |--|-----------| | DeepOpt: Optimized Scheduling of CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workloads for ASIC-based Systolic Deep Learning According to the CNN Workload Systolic Deep Learning According to the CNN Wor | el- | | erators | 235 | | Value-Aware Error Detection and Correction for SRAM Buffers in Low-Bitwidth, Floating-Point CN Accelerators | | | Accelerations | 212 | | Session 3D: Stochastic and Approximate Computing | | | MIPAC: Dynamic Input-Aware Accuracy Control for Dynamic Auto-Tuning of Iterative Approxima | ate | | Computing | 248 | | Normalized Stability: A Cross-Level Design Metric for Early Termination in Stochastic Computing | . 254 | | Zero Correlation Error: A Metric for Finite-Length Bitstream Independence in Stochastic Computing | ng 260 | | An Efficient Approximate Node Merging with an Error Rate Guarantee | 266 | | Session 3E: Timing Analysis and Timing-Aware Design | | | An Adaptive Delay Model for Timing Yield Estimation under Wide-Voltage Range | 272 | | ATM: A High Accuracy Extracted Timing Model for Hierarchical Timing Analysis | 278 | | Mode-wise Voltage-scalable Design with Activation-aware Slack Assignment for Energy Minimiza | tion 284 | | A Timing Prediction Framework for Wide Voltage Design with Data Augmentation Strategy | 291 | | Session 4A: Technological Advancements inside the AI chips, and using the AI Chip | s | | Energy-Efficient Deep Neural Networks with Mixed-Signal Neurons and Dense-Local and Spars | | | Global Connectivity | | | Merged Logic and Memory Fabrics for AI Workloads | 305 | | Vision Control Unit in Fully Self Driving Vehicles using Xilinx MPSoC and Opensource Stack | 311 | | Session 4B: System-Level Modeling, Simulation, and Exploration | | | Constrained Conservative State Symbolic Co-analysis for Ultra-low-power Embedded Systems | 318 | | Arbitrary and Variable Precision Floating Point Arithmetic Support in Dynamic Binary Translation | 325 | | Optimizing Temporal Decoupling using Event Relevance | 331 | | Design Space Exploration of Heterogeneous-Accelerator SoCs with Hyperparameter Optimization | 338 | | Session 4C: Neural Network Optimizations for Compact AI Inference | | | | | | DNR: A Tunable Robust Pruning Framework Through Dynamic Network Rewiring of DNNs | 344 | | DNR: A Tunable Robust Pruning Framework Through Dynamic Network Rewiring of DNNs Dynamic Programming Assisted Quantization Approaches for Compressing Normal and Robust DN | | | | IN | | Dynamic Programming Assisted Quantization Approaches for Compressing Normal and Robust DN | NN
351 | | Session 4D: Brain-Inspired Computing | | |---|------| | Mixed Precision Quantization for ReRAM-based DNN Inference Accelerators | 372 | | A reduced-precision streaming SpMV architecture for Personalized PageRank on FPGA | 378 | | HyperRec: Efficient Recommender Systems with Hyperdimensional Computing | 384 | | Efficient Techniques for Training the Memristor-based Spiking Neural Networks Targeting Better Speed, Energy and Lifetime | 390 | | Session 4E: Cross-Layer Hardware Security | | | PCBench: Benchmarking of Board-Level Hardware Attacks and Trojans | 396 | | Cache-Aware Dynamic Skewed Tree for Fast Memory Authentication | 402 | | Automated Test Generation for Hardware Trojan Detection using Reinforcement Learning | 408 | | On the Impact of Aging on Power Analysis Attacks Targeting Power-Equalized Cryptographic Circuits | 414 | | Session 5B: Embedded Operating Systems and Information Retrieval | | | Energy-Performance Co-Management of Mixed-Sensitivity Workloads on Heterogeneous Multi-core Systems | 421 | | Optimizing Inter-Core Data-Propagation Delays in Industrial Embedded Systems under Partitioned Scheduling | 428 | | LiteIndex: Memory-Efficient Schema-Agnostic Indexing for JSON documents in SQLite | | | Session 5C: Security Issues in AI and Their Impacts on Hardware Security | | | Micro-architectural Cache Side-Channel Attacks and Countermeasures | 441 | | Security of Neural Networks from Hardware Perspective: A Survey and Beyond | 449 | | Learning Assisted Side Channel Delay Test for Detection of Recycled ICs | 455 | | ML-augmented Methodology for Fast Thermal Side-Channel Emission Analysis | 463 | | Session 5D: Advances in Logic and High-level Synthesis | | | 1 st -Order to 2 nd -Order Threshold Logic Gate Transformation with an Enhanced ILP-based Identification Method | 469 | | A Novel Technology Mapper for Complex Universal Gates | 475 | | High-Level Synthesis of Transactional Memory | 481 | | Session 5E: Hardware-Oriented Threats and Solutions in Neural Networks | | | VADER: Leveraging the Natural Variation of Hardware to Enhance Adversarial Attack | 487 | | Entropy-Based Modeling for Estimating Adversarial Bit-flip Attack Impact on Binarized Neural Network | k493 | | A Low Cost Weight Obfuscation Scheme for Security Enhancement of ReRAM Based Neural Network Accelerators | 499 | | Session 6B: Advanced Optimizations for Embedded Systems | | |--|-----| | Puncturing the memory wall: Joint optimization of network compression with approximate memory for ASR application | 505 | | Canonical Huffman Decoder on Fine-grain Many-core Processor Arrays | | | A Decomposition-Based Synthesis Algorithm for Sparse Matrix-Vector Multiplication in Parallel | | | Communication Structure | 518 | | Session 6C: Design and Learning of Logic Circuits and Systems | | | Learning Boolean Circuits from Examples for Approximate Logic Synthesis | 524 | | Read your Circuit: Leveraging Word Embedding to Guide Logic Optimization | 530 | | Exploiting HLS-Generated Multi-Version Kernels to Improve CPU-FPGA Cloud Systems | 536 | | Session 6D: Hardware Locking and Obfuscation | | | Area Efficient Functional Locking through Coarse Grained Runtime Reconfigurable Architectures | 542 | | ObfusX: Routing Obfuscation with Explanatory Analysis of a Machine Learning Attack | 548 | | Breaking Analog Biasing Locking Techniques via Re-Synthesis | 555 | | Session 6E: Efficient Solutions for Emerging Technologies | | | Energy and QoS-Aware Dynamic Reliability Management of IoT Edge Computing Systems | 561 | | Light: A Scalable and Efficient Wavelength-Routed Optical Networks-On-Chip Topology | 568 | | One-Pass Synthesis for Field-coupled Nanocomputing Technologies | 574 | | Session 7A: Platform-Specific Neural Network Acceleration | | | Real-Time Mobile Acceleration of DNNs: From Computer Vision to Medical Applications | 581 | | Dynamic Neural Network to Enable Run-Time Trade-off between Accuracy and Latency | 587 | | When Machine Learning Meets Quantum Computer: Network-Circuit Co-Design via Quantum-Aware Neural Architecture Search | 593 | | Improving Efficiency in Neural Network Accelerator using Operands Hamming Distance Optimization | | | Lightweight Run-Time Working Memory Compression for Deployment of Deep Neural Networks on | | | Resource-Constrained MCUs | 607 | | Session 7B: Toward Energy-Efficient Embedded Systems | | | EHDSktch: A Generic Low Power Architecture for Sketching in Energy Harvesting Devices | 615 | | Energy-Aware Design Methodology for Myocardial Infarction Detection on Low-Power Wearable Devices | 621 | | Power-Efficient Layer Mapping for CNNs on Integrated CPU and GPU Platforms: A Case Study | 627 | | A Write-friendly Arithmetic Coding Scheme for Achieving Energy-Efficient Non-Volatile Memory | | | Systems | 633 | | Session 7C: Software and System Support for Nonvolatile Memory | | |--|---| | DP-Sim: A Full-stack Simulation Infrastructure for Digital Processing In-Memory Architectures 639 | 9 | | SAC: A Stream Aware Write Cache Scheme for Multi-Streamed Solid State Drives | 5 | | Providing Plug N' Play for Processing-in-Memory Accelerators | 1 | | Aging Aware Request Scheduling for Non-Volatile Main Memory | 7 | | Session 7D: Learning-Driven VLSI Layout Automation Techniques | | | Placement for Wafer-Scale Deep Learning Accelerator | 5 | | Net ² : A Graph Attention Network Method Customized for Pre-Placement Net Length Estimation 67 | 1 | | Machine Learning-based Structural Pre-route Insertability Prediction and Improvement with Guided Backpropagation | 8 | | Standard Cell Routing with Reinforcement Learning and Genetic Algorithm in Advanced Technology Nodes | | | Session 7E: DNN-Based Physical Analysis and DNN Accelerator Design | | | Thermal and IR Drop Analysis Using Convolutional Encoder-Decoder Networks 690 | 0 | | GRA-LPO: Graph Convolution Based Leakage Power Optimization | 7 | | DEF: Differential Encoding of Featuremaps for Low Power Convolutional Neural Network Accelerators 70. | 3 | | Temperature-Aware Optimization of Monolithic 3D Deep Neural Network Accelerators | 9 | | Session 8B: Embedded Neural Networks and File Systems | | | Gravity: An Artificial Neural Network Compiler for Embedded Applications | 5 | | A Self-Test Framework for Detecting Fault-induced Accuracy Drop in Neural Network Accelerators . 72 | 2 | | Facilitating the Efficiency of Secure File Data and Metadata Deletion on SMR-based Ext4 File System 72 | 8 | | Session 8C: Design Automation for Future Autonomy | | | Efficient Computing Platform Design for Autonomous Driving Systems | 4 | | On Designing Computing Systems for Autonomous Vehicles: a PerceptIn Case Study | 2 | | Runtime Software Selection for Adaptive Automotive Systems | 8 | | Safety-Assured Design and Adaptation of Learning-Enabled Autonomous Systems | 3 | | Session 8D: Emerging Hardware Verification | | | System-Level Verification of Linear and Non-Linear Behaviors of RF Amplifiers using Metamorphic Relations | 1 | | Random Stimuli Generation for the Verification of Quantum Circuits | 7 | | Exploiting Extended Krylov Subspace for the Reduction of Regular and Singular Circuit Models 77. | 3 | | Session 8E: Optimization and Mapping Methods for Quantum Technologies | | | Algebraic and Boolean Optimization Methods for AQFP Superconducting Circuits | 9 | | Dynamical Decomposition and Mapping of MPMCT Gates to Nearest Neighbor Architectures | 786 | |--|-----| | Exploiting Quantum Teleportation in Quantum Circuit Mapping | 792 | | Session 9B: Emerging System Architectures for Edge-AI | | | Hardware-Aware NAS Framework with Layer Adaptive Scheduling on Embedded System | 798 | | Dataflow-Architecture Co-Design for 2.5D DNN Accelerators using Wireless Network-on-Package . | 806 | | Block-Circulant Neural Network Accelerator Featuring Fine-Grained Frequency-Domain Quantization and Reconfigurable FFT Modules | 813 | | BatchSizer: Power-Performance Trade-off for DNN Inference | 819 | | Session 9C: Cutting-Edge EDA Techniques for Advanced Process Technologies | | | Deep Learning for Mask Synthesis and Verification: A Survey | 825 | | Physical Synthesis for Advanced Neural Network Processors | 833 | | Advancements and Challenges on Parasitic Extraction for Advanced Process Technologies | 841 | | Session 9D: Robust and Reliable Memory Centric Computing at Post-Moore | | | Reliability-Aware Training and Performance Modeling for Processing-In-Memory Systems | 847 | | $Robustness\ of\ Neuromorphic\ Computing\ with\ RRAM-based\ Crossbars\ and\ Optical\ Neural\ Networks\ .$ | 853 | | Uncertainty Modeling of Emerging Device based Computing-in-Memory Neural Accelerators with | | | Application to Neural Architecture Search | | | A Physical-Aware Framework for Memory Network Design Space Exploration | 865 | | Session 9E: Design for Manufacturing and Soft Error Tolerance | | | Manufacturing-Aware Power Staple Insertion Optimization by Enhanced Multi-Row Detailed Placement Refinement | 872 | | A Hierarchical Assessment Strategy on Soft Error Propagation in Deep Learning Controller | 878 | | Attacking a CNN-based Layout Hotspot Detector Using Group Gradient Method | 885 | | Bayesian Inference on Introduced General Region: An Efficient Parametric Yield Estimation Method for Integrated Circuits | 892 | | Analog IC Aging-induced Degradation Estimation via Heterogeneous Graph Convolutional Networks | 898 |