# Pipelines 2021

## Planning

Proceedings of Sessions of the Pipelines 2021 Conference

Online 3 – 6 August 2021

### **Editors**:

Duane Strayer C. Douglas Jenkins

ISBN: 978-1-7138-3493-9

#### Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571



Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2021) by American Society of Civil Engineers All rights reserved.

Printed with permission by Curran Associates, Inc. (2021)

For permission requests, please contact American Society of Civil Engineers at the address below.

American Society of Civil Engineers 1801 Alexander Bell Drive Reston, VA 20191 USA

Phone: (800) 548-2723 Fax: (703) 295-6333

www.asce.org

#### Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400

Fax: 845-758-2633

Email: curran@proceedings.com Web: www.proceedings.com Pipelines 2021 vii

### **Contents**

#### Asset Management

| A Risk-Based Long-Term Capital Planning Program                                                                         | 1  |
|-------------------------------------------------------------------------------------------------------------------------|----|
| ATCO's Urban Pipeline Replacement (UPR) Program                                                                         | 8  |
| Coachella Valley Asset Management Festival—Success of CVWD's Expedited Implementation                                   | 8  |
| Clinton McAdams and Katterinne Fleming                                                                                  |    |
| Condition Assessment Priorities for the City of Houston                                                                 | 6  |
| Desktop Analysis of Buried Pipelines to Develop Renewal Program and Long-Term Capital Improvement Planning              | 4  |
| Developing a Survivor Curve for Prestressed Concrete Cylinder Pipe4 Rabia Mady                                          | 6  |
| Emergency Action Plan for Critical Pipelines                                                                            | 5  |
| GLWA Water Research Foundation Tailored Collaboration Project 5069:  Management of PCCP to Extend Asset Life            | 3  |
| Graham E. C. Bell, John Norton Jr., Mike Higgins, Ashan McNealy, and Jerry Lynch                                        |    |
| In Situ Structural Health Monitoring of Structurally Renewed Water Transmission Pipes                                   | _⊿ |
| Wentao Wang, Jerome P. Lynch, Curt Wolf, John Norton Jr., Todd W. King, Timothy Kuhns, Ali Alavi, and Graham E. C. Bell | 7  |
| Increasing Pipelines' Resilience for a Changing Climate                                                                 | 4  |

Pipelines 2021 viii

| Innovative Pipeline Inspection Technologies Used in the Assessment of Cape Cod Bridges92                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Michael Tupper, Colleen Kelly, and Robert D. House                                                                                                        |
| Innovative Solutions for Water Crossing Pipeline Inspections                                                                                              |
| Pipe Condition—Gresham's Approach to Asset Management                                                                                                     |
| Pipe Criticality Assessment without a Hydraulic Model                                                                                                     |
| Risk Analysis in the Absence of Data to Help Plan Capital Improvement Projects125<br>Greta Vladeanu, Sepideh Yazdekhasti, and Craig Michael Daly          |
| Smart and Automated Sewer Pipeline Defect Detection and Classification135<br>Khalid Kaddoura and Jeff Atherton                                            |
| Machine Learning and Artificial Intelligence                                                                                                              |
| Case Study on Productivity Increases in CCTV Inspection through an  AI-Enabled Workflow                                                                   |
| <b>Evaluation of Public Private Partnership in Infrastructure Projects151</b> Karthikeyan Loganathan, Mohammad Najafi, Vinayak Kaushal, and Pius Agyemang |
| How Well Can Machine Learning Support Pipeline Leak Monitoring?160 V. Burtea and P. Murray                                                                |
| Machine Learning and AI for Water Utilities: Junk or Jewel? Triumph or Trash?170 Peter Martin and Craig Daly                                              |
| The Value of Machine Learning Main Break Prediction                                                                                                       |
| Using Machine Learning to Predict Condition of Sewer Pipes                                                                                                |

Pipelines 2021 ix

#### Sewermain Condition Assessment

| Effect of Erosion Voids on Rigid Sewers of Non-Circular Shape                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inside the Fence: Assessing and Remediating 60+-Year-Old Critical Plant Piping20 Daniel Rodriguez                                                                               |
| Microbiologically Induced Corrosion of Concrete in Sanitary Sewerage System:  A Review of Processes and Control Mechanisms21' Vinayak Kaushal and Mohammad Najafi               |
| Multisensor Inspection: Assessing the Condition of Large Diameter Pipes with 3D Digital Modelling226 Csaba Ekes                                                                 |
| Inspecting Twin 42" Reinforced Concrete Pipes with Pipe Penetrating Radar Supplemented by LiDAR23 Csaba Ékes                                                                    |
| Risk Based Condition Assessment of Force Mains Using External Corrosion  Survey Technologies                                                                                    |
| Watermain Condition Assessment                                                                                                                                                  |
| A New Method to Detect Pipe Leaks during Pneumatic Testing250 Guohua Li and Jackie Zhao                                                                                         |
| Case History: Flow Test of a 97-Year-Old Cement-Mortar Lined Cast Iron Pipe25°<br>L. Gregg Horn, Kanwal Oberoi, and Aaron M. Horbovetz                                          |
| Case Study of 97-Year-Old Cement Mortar Lining269 Maury D. Gaston                                                                                                               |
| Case Study—A Northern Alberta Utility's Proactive Approach to Assessment Avoids Potential Catastrophic Holiday Failure273 Andrew Rees, Kate Kirk, Justin Hebner, and Luis Cunha |
| Condition Assessment of a Critical Steel Water Main in Spokane, Washington280 Jeanne L. Finger, Seth McIntosh, Allison Stroebele, Ashan McNealy, Jenna Mariano, and Brian Hext  |

Pipelines 2021 x

| Development of Performance Specifications for Cementitious Spray Applied Pipe Linings for Culvert Renewals290                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zahra Kohankar Kouchesfehani, Amin Darabnoush Tehrani, Mohammad Najafi, and Lynn Osborn                                                                    |
| Evaluations of Corrosion Probe Readings for Ductile Iron Pipe Provided with Metallized Zinc and Enhanced Polyethylene Encasement Coatings301 L. Gregg Horn |
| Failure Sensitivity Analysis of Steel Pipes Considering Circular Defects: FEA Study313 Masood Hajali, Mohsen Damadam, and Ashan McNealy                    |
| Forecasting Pipeline Construction Costs Using Recurrent Neural Networks325<br>Sooin Kim, Bahram Abediniangerabi, and Mohsen Shahandashti                   |
| Innovative Overline Survey Techniques for the Water and Wastewater Industry336 Chukwuma Onuoha, Eric Pozniak, Vignesh Shankar, and Cameron White           |
| Integrating Valve Inspections with Pipeline Inspections                                                                                                    |
| Out of Sight, yet Still in Mind—Success of San Diego's Programmatic Condition Assessments                                                                  |
| Long-Term Properties of PVC Water Pipe Used in a Small Chlorinated Water System for 50+ Years in Endicott, Nebraska                                        |
| Siphon 1—Large Diameter Steel Aerial Pipe Replacement Evaluation                                                                                           |
| Verification Confirms Inline Inspection Results for Targeted Repairs on a Critical North Texas Pipeline                                                    |