Proceedings of ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition

Volume 9B

June 7-11, 2021 Virtual, Online

Conference Sponsor International Gas Turbine Institute

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS

Two Park Avenue * New York, N.Y. 10016

© 2021, The American Society of Mechanical Engineers, 2 Park Avenue, New York, NY 10016, USA (www.asme.org)

All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

INFORMATION CONTAINED IN THIS WORK HAS BEEN OBTAINED BY THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS FROM SOURCES BELIEVED TO BE RELIABLE. HOWEVER, NEITHER ASME NOR ITS AUTHORS OR EDITORS GUARANTEE THE ACCURACY OR COMPLETENESS OF ANY INFORMATION PUBLISHED IN THIS WORK. NEITHER ASME NOR ITS AUTHORS AND EDITORS SHALL BE RESPONSIBLE FOR ANY ERRORS, OMISSIONS, OR DAMAGES ARISING OUT OF THE USE OF THIS INFORMATION. THE WORK IS PUBLISHED WITH THE UNDERSTANDING THAT ASME AND ITS AUTHORS AND EDITORS ARE SUPPLYING INFORMATION BUT ARE NOT ATTEMPTING TO RENDER ENGINEERING OR OTHER PROFESSIONAL SERVICES. IF SUCH ENGINEERING OR PROFESSIONAL SERVICES ARE REQUIRED, THE ASSISTANCE OF AN APPROPRIATE PROFESSIONAL SHOULD BE SOUGHT.

ASME shall not be responsible for statements or opinions advanced in papers or . . . printed in its publications (B7.1.3). Statement from the Bylaws.

For authorization to photocopy material for internal or personal use under those circumstances not falling within the fair use provisions of the Copyright Act, contact the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923, tel: 978-750-8400, www.copyright.com.

Requests for special permission or bulk reproduction should be addressed to the ASME Publishing Department, or submitted online at: https://www.asme.org/publications-submissions/journals/information-for-authors/journalguidelines/rights-and-permissions

ISBN: 978-0-7918-8503-1

CONTENTS

Proceedings of ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition

Structures and Dynamics: Fatigue, Fracture, and Life Prediction	
GT2021-04132 Method and Verification for Material Calibration of the Chaboche Plasticity Model for Multiple Material Directions <i>Charles R. Krouse, Grant O. Musgrove, Taewoan Kim, Seungmin Lee, Muhyoung Lee, and</i> <i>Seongyong Jeong</i>	V09BT26A001
GT2021-58493 A Novel Vibration-Based Fault Detection Approach of Bolted Engineering Structures Without Reference <i>Quankun Li, Zengde Shao, and Mingfu Liao</i>	V09BT26A002
GT2021-58727 A Method for Establishing the Central Crack Stress Intensity Factor Database for Probabilistic Risk Assessment Based on the Universal Weight Function <i>Tongge Xu, Shuiting Ding, Huimin Zhou, and Guo Li</i>	V09BT26A003
GT2021-58787 Energy Dissipation Metrics for Fatigue Damage Detection in the Short Crack Regime for Aluminum Alloys Susheel Dharmadhikari and Amrita Basak	V09BT26A004
GT2021-58801 Study on Relationship Between Dislocation Density and Creep Strain Rate of Single Crystal Ni Based Superalloy for Gas Turbines Using the Discrete Cosine Transform <i>Hideo Hiraguchi</i>	V09BT26A005
GT2021-58836 On the Creep-Fatigue Design of Double Skin Transpiration Cooled Components Towards Hotter Turbine Cycle Temperatures <i>Christos G. Skamniotis and Alan C. F. Cocks</i>	V09BT26A006
GT2021-58959 Experimental and Numerical Investigation of High-Temperature Multi-Axial Fatigue Harish Ramesh Babu, Marco Böcker, Mario Raddatz, Sebastian Henkel, Horst Biermann, and Uwe Gampe	V09BT26A007
GT2021-59581 Crystal Visco-Plastic Model for Directionally Solidified Ni-Base Superalloys Under Monotonic and Low Cycle Fatigue Navindra Wijeyeratne, Firat Irmak, and Ali P. Gordon	V09BT26A008
GT2021-59608 Experimental and Analytical Investigation of Cyclic Crack Initiation in Nickel Based Super Alloy With Stress Concentration Features <i>Alex Torkaman, Steve Fiebiger, Nathan O'Nora, Devin O'Neal, and Ali Gordon</i>	V09BT26A009
GT2021-59626 HCF Optimization of a High Speed Variable Geometry Turbine <i>Alister Simpson, Sung in Kim, Jongyoon Park, Seong Kwon, and Sejong Yoo</i>	V09BT26A010
GT2021-59681 Computational Model of Mechano-Electrochemical Effect of Aluminum Alloys Corrosion Hessein Ali, Zachary Stein, Quentin Fouliard, Hossein Ebrahimi, Peter Warren, Seetha Raghavan, and Ranajay Ghosh	V09BT26A011

GT2021-59905 Fretting Fatigue – An Integral Simulation Approach to Strengthening by Shot Peening Patrick Gerken and Christoph H. Richter	V09BT26A012
GT2021-59914 Data Driven Approach to Analyzing The Impact of Power Plant Cycling on Air Preheater Degradation and Remaining Useful Life <i>Himanshu Sharma, Veronica Adetola, Laurentiu Marinovici, and Herbert T. Schaef</i>	V09BT26A013
GT2021-60070 Mechanical Testing of Additively Manufactured Superalloy Lugs Sushovan Roychowdhury, Henrik Karlsson, Björn Henriksson, and Pher-Ola Carlson	V09BT26A014
Structures and Dynamics: Probabilistic Methods	
GT2021-58480 A Reduced Order Modeling Approach to Probabilistic Creep-Damage Predictions in Finite Element Analysis Md Abir Hossain, Jacqueline R. Cottingham, and Calvin M. Stewart	V09BT27A001
GT2021-58620 Improved Rotor Design With Combined 3D-2D Probabilistic Approach <i>Lukas Schuchard, Matthias Voigt, Ronald Mailach, Peter Dumstorff, Armin de Lazzer, and</i> <i>Henning Almstedt</i>	V09BT27A002
GT2021-58842	V09BT27A003
Sayan Ghosh, Valeria Andreoli, Govinda A. Padmanabha, Cheng Peng, Steven Atkinson, Piyush Pandita, Thomas Vandeputte, Nicholas Zabaras, and Liping Wang	
GT2021-59295 High-Performance Computing Probabilistic Fracture Mechanics Implementation for Gas Turbine Rotor Disks on Distributed Architectures Including Graphics Processing Units (GPUs) <i>Mrugesh Gajjar, Christian Amann, and Kai Kadau</i>	V09BT27A004
GT2021-59745 Bayesian Optimization for Multi-Objective High-Dimensional Turbine Aero Design Yiming Zhang, Sayan Ghosh, Thomas Vandeputte, and Liping Wang	V09BT27A005
Structures and Dynamics: Rotordynamics	
GT2021-58800 Rotordynamic Evaluation of a Large High-Speed Rotor Equipped With Flexure Pivot Journal Bearings and Integral Squeeze Film Damper <i>Giuseppe Vannini, Alice Innocenti, Filippo Cangioli, and Kim Jongsoo</i>	V09BT28A001
GT2021-58824 Dynamic Analysis of a Coupled Dual-Rotor With Squeeze Film Damper Considering Sudden Unbalance <i>Ying Cui, Yuxi Huang, Guogang Yang, Yongliang Wang, and Han Zhang</i>	V09BT28A002
GT2021-59160 Rotor-Blade Interaction During Blade Resonance Drive-Through Roland Grein, Ulrich Ehehalt, Christian Siewert, and Norbert Kill	V09BT28A003
GT2021-59725 System Level Analysis of Compressor Eye-Labyrinth Seal Rotordynamic Forces: A Computational Fluid Dynamics Approach <i>Md Shujan Ali, Farzam Mortazavi, and Alan Palazzolo</i>	V09BT28A004
GT2021-59970 Test and Theory for a Refined Structural Model of a Hirth Coupling <i>Baik Jin Kim, Joseph Oh, and Alan Palazzolo</i>	V09BT28A005

GT2021-60036 An Unconventional Method for the Diagnosis and Study of Generator Rotor Thermal Bows <i>Steven Chatterton, Paolo Pennacchi, and Andrea Vania</i>	V09BT28A006
GT2021-60162 Method of Coupled Vibration Control for Dual Rotor System With Inter-Shaft Bearing Yanhong Ma, Chenglong Shi, Bo Sun, and Jie Hong	V09BT28A007
GT2021-60195 Dynamic Characteristics Analysis of Flexible Rotor System With Pedestal Looseness <i>Jie Hong, Qiyao Dai, Fayong Wu, and Yanhong Ma</i>	V09BT28A008
GT2021-60301 Effective Evaluation of Rotordynamic Performance Within Rotor-Bearing System Design Bounds <i>Zhusan Luo and Carl L. Schwarz</i>	V09BT28A009
Structures and Dynamics: Structural Mechanics and Vibration	
GT2021-02411 . Advanced Processing of a Blade Vibratory Response Obtained With Tip Timing Method Using Hyperparameter-Free Sparse Estimation Method <i>Vsevolod Kharyton and Dave Zachariah</i>	V09BT29A001
GT2021-04281 Technological Choices for Vibratory Robustness of Turbine Bladed Disk Mathieu Herran, Marc Dijoud, and Christophe Colette	V09BT29A002
GT2021-58437 Calculation of Nonlinear Systems Under Narrow Band Excitation Using Equivalent Linearization and Path Continuation <i>Alwin Förster and Lars Panning-von Scheidt</i>	V09BT29A003
GT2021-58445 New Modeling Combining Kinematic and Stiffness Nonlinearity in Under Platform Dampers <i>Ryuichi Umehara, Sotaro Takei, Tomohiro Akaki, and Hiroki Kitada</i>	V09BT29A004
GT2021-58470 Simultaneous Optimization of Mistuned Bladed Disks for Forced and Self-Excited Vibration Considering Amount of Unbalance Yasutomo Kaneko, Toshio Watanabe, and Tatsuya Furukawa	V09BT29A005
GT2021-58722 Effect of Bladed Packets on Transient Vibration Localization Behaviors of Mistuned Whole Bladed Disk System <i>Xuanen Kan</i>	V09BT29A006
GT2021-58747 Structural Integrity of Serrated Leading Edge Guide Vane Blades for Noise Reduction <i>Cleopatra Cuciumita, Ning Qin, Felix Stanley, and Shahrokh Shahpar</i>	V09BT29A007
GT2021-58817 On the Performance of Wave-Like Dry Friction and Piezoelectric Hybrid Flexible Dampers <i>Y. G. Wu, Y. Fan, L. Li, and Z. M. Zhao</i>	V09BT29A008
GT2021-58835 Surrogate Models for the Prediction of Damping Ratios in Coupled Acoustoelastic Rotor-Cavity Systems	V09BT29A009
Christoph Rocky Heinrich, Tina Unglaube, Bernd Beirow, Dieter Brillert, Klaus Steff, and Nico Petry	
GT2021-58919 Design and Tests of a New Damper for a Gas Turbine Thin-Shell Duct Serena Gabriele, Paolo Di Sisto, Giuseppe Del Vescovo, and Conti Simone	V09BT29A010

GT2021-58931 Assessment of Geometric Nonlinearities Influence on NASA Rotor 37 Response to Blade Tip/Casing Rubbing Events <i>Elise Delhez, Florence Nyssen, Jean-Claude Golinval, and Alain Batailly</i>	V09BT29A011
GT2021-58982 Accurate Interpolation of the Dependency of Modal Properties on the Rotation Speed for the Transient Response Analysis of Bladed Disks <i>Jing Tong, Chaoping Zang, and E. P. Petrov</i>	V09BT29A012
GT2021-58985 Analysis of Loading and Vibration Histories on Natural Frequencies and Modal Damping of Blades With Friction at Root Contact Interfaces <i>Junjie Chen, Chaoping Zang, Biao Zhou, and E. P. Petrov</i>	V09BT29A013
GT2021-59008 Rubbing Of a Bladed Disk Considering Coriolis Effect: A Reduced Model Based on Complex Modal Analysis Dawei Chen, Jiguo Zhang, Jiaguangyi Xiao, and Yong Chen	V09BT29A014
GT2021-59104 Optimization of Non-Uniform Sensor Placement for Blade Tip Timing Based on Equiangular Tight Frame Theory Zhiwei Zhang, Pengfei Chai, Yong Chen, Jie Tian, and Hua Quyang	V09BT29A015
GT2021-59126	V09BT29A016
GT2021-59216	V09BT29A017
GT2021-59272 Development of a Multi-Shaker-Control to Investigate the Influence of the Interblade Phase Angle on Frictionally Damped Turbine Blades Florian Jäger, Ferhat Kaptan, Lars Panning-Von Scheidt, and Jörg Wallaschek	V09BT29A018
GT2021-59283 Mistuning and Damping of a Radial Turbine Wheel. Part 1: Fundamental Analyses and Design of Intentional Mistuning Pattern Alex Nakos, Bernd Beirow, and Arthur Zobel	V09BT29A019
GT2021-59298 Development of a Harmonic Balance Method-Based Numerical Strategy for Blade-Tip/Casing Interactions: Application to NASA Rotor 37 <i>Yann Colaïtis and Alain Batailly</i>	V09BT29A020
GT2021-59356 Full-Scale Vibration Testing of Nozzle Guide Vanes Giuseppe Macoretta, Bernardo Disma Monelli, Paolo Neri, Federico Bucciarelli, Damaso Checcacci, and Enrico Giusti	V09BT29A021
GT2021-59390 A Dynamic Systems Based Approach to Estimate Cyclic and Creep Damage of a Power Turbine Blade Subjected to a Random Transient Operation <i>Dipankar Dua, Quang Le, Anthony Saladino, Deepak Thirumurthy, and Jaskirat Singh</i>	V09BT29A022
GT2021-59461 Topological Optimization of Piezoelectric Transducers for Vibration Reduction of Bladed Disks <i>Y. Fan, H. Y. Ma, Y. G. Wu, L. Li, K. Y. Tian, and Z. M. Zhao</i>	V09BT29A023

GT2021-59528	T29A024
GT2021-59887	T29A025
GT2021-59927	T29A026
GT2021-59940	T29A027
GT2021-60238	T29A028

Jeffrey M. Brown, Alex A. Kaszynski, Daniel L. Gillaugh, Emily B. Carper, and Joseph A. Beck