12th International Conference on Zinc & Zinc Alloy Coated Steel Sheet (GALVATECH 2021)

Online 21 - 23 June 2021

Volume 1 of 2

ISBN: 978-1-7138-3850-0

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Printed with permission by Curran Associates, Inc. (2021)

For permission requests, please contact Austrian Society for Metallurgy and Materials (ASMET) at the address below.

Austrian Society for Metallurgy and Materials (ASMET) Franz-Josef-Sraße 18 8700 Leoben Austria

Phone: +43 3842 402 2290 Fax: +43 3842 402 2202

asmet@asmet.at

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400

Fax: 845-758-2633

Email: curran@proceedings.com Web: www.proceedings.com

Contents

PAGE	NUMBER
PLENARY TALKS	1
EUROPE: TOMORROW JUST AROUND THE CORNER? 228	1
RECENT PROGRESS OF ZINC AN ZINC ALLOY COATED STEEL SHEETS IN KOREA 212	9
RECENT DEVELOPMENTS AND OUTLOOK ON ZINC AND ZINC ALLOY COATED STEEL SHEETS IN JAPAN 214	16
NORTH AMERICAN DEVELOPMENTS AND OPPORTUNITIES FOR GALVANIZED STEEL SHEET 211	24
DEVELOPMENT OF ZINC AND ZINC-ALLOY COATED STEEL SHEET IN CHINA 177 .	39
AUTOMOTIVE APPLICATIONS - ZN AND ZNFE COATINGS	53
STRESS CORROSION CRACKING OF HOT FORMING STEELS 225	53
THE ROLE OF STEEL SHEET AND ITS IMPACT ON AN OUTSTANDING QUALITY PAINT USED FOR AUTOMOTIVE OUTER SKIN 87	60
NEXT GENERATION EDT TECHNOLOGY 222	71
THE EFFECT OF BONDING STATE BETWEEN THE GALVANIZED STEEL SHEETS AND THE ADHESIVE ON DETERIORATION BEHAVIOR OF ADHESIVE JOINT 90	79
AN INNOVATIVE GI WITH IMPROVED GALLING AND SURFACE PROPERTIES FOR EXPOSED AUTOMOTIVE APPLICATIONS 220	90
CURRENT USE AND FUTURE OUTLOOK OF COATED SHEET STEEL AT VOLVO CARS 226	*
INVESTIGATION OF HOT-DIP ZnMgAl COATINGS FOR AUTOMOTIVE APPLICATIONS 33	.00
COMPOSITIONAL AND STRUCTURAL OPTIMIZATION OF THE Zn-Mg ALLOY COATING FOR INDUSTRIAL APPLICATIONS 65	.08
ANTI-CORROSION PERFORMANCE OF ZnMg AND ZnMgAl-COATED STEELS FOR AUTOMOTIVE APPLICATIONS 138	16
CHALLENGES GALVANIZING 2ND AND 3RD GENERATION AHSS	22
CHALLENGINGS IN GALVANNEALING AHSS AT AN INDUSTRIAL HOT DIP GALVA-	00

U. S. STEEL XG3 – 3rd GENERATION STEEL: CUSTOMER-FRIENDLY CHEMISTRY, PROPERTIES, AND MANUFACTURABILITY ENABLED BY UNIQUE PROCESSING 160 134
EFFECT OF STEEL SUB-SURFACE STRUCTURE ON MECHANICAL PROPERTIES OF GAL-VANIZED 3rd GENERATION ADVANCED HIGH STRENGTH STEELS 39 145
EFFECT OF CGL-COMPATIBLE HEAT TREATMENTS ON THE SELECTIVE OXIDATION OF A 0.15C-6Mn-2Al-1Si THIRD-GENERATION ADVANCED HIGH STRENGTH STEEL 17
COATING ALLOY AND MODIFICATION EFFECTS ON CORROSION BEHAVIOUR 164
EFFECT OF MAGNESIUM ON THE MICROSTRUCTURE AND CORROSION RESISTANCE OF 55% Al-Zn COATING 103
STUDY OF MANGANESE ADDITION ON THE CORROSION RESISTANCE OF GALVANIZED ZINC COATING 204
CATASTROPHIC BEHAVIOR OF GALVANIZED STEEL EXPLAINED BY FUNDAMENTALS OF CORROSION SCIENCE 171
THE EFFECT OF PHOSPHORIC ACID ADDED TO CHEMICAL CONVERSION COATING LAYER ON CORROSION PROTECTION IN SCRIBED AREAS OF ZINC-COATED STEELS 22
COATING ALLOY CORROSION STUDIES
INFLUENCE OF MINOR ADDITION OF Si AND Ti ON THE CORROSION PERFORMANCE OF ZM COATED STEEL 3
ELECTROCHEMICAL BEHAVIOR OF Si PHASES IN NOVEL ZnAlmgSi COATINGS 205 209
THE EFFECT OF MICROSTRUCTURE ON THE CORROSION STABILITY OF ZINC ALUMINIUM MAGNESIUM ALLOYED COATED STEEL IN ATMOSPHERIC CONDITIONS 21
ZnAlmg METALLIC COATINGS IN HARSH ENVIRONMENTS: A COMPARATIVE AND CHALLENGING STUDY 165
CORROSION EVALUATION OF THIN Zn-Al ALLOY COATINGS IN A SEVERE MARINE ENVIRONMENT 44
COATING MICROSTRUCTURE ANALYSIS AND STEEL/COATING SURFACE REACTIV-ITY
SCANNING KELVIN PROBE TECHNIQUES FOR THE INVESTIGATION OF CORROSION, HYDROGEN UPTAKE AND PERMEATION PROPERTIES OF ZINC ALLOY COATINGS ON STEEL 215
ON GRAIN BOUNDARY TOPOGRAPHY AND SURFACE REACTIVITY DURING HOT-DIP GALVANISING 112
DENDRITIC MORPHOLOGIES OF HOT-DIP GALVANIZED Zn-0.2 WT.% AI COATINGS: EXISTENCE OF THIRD PREFERRED GROWTH DIRECTIONS 81
MICROSTRUCTURE AND TEXTURE ANALYSIS OF A NEAR-EUTECTIC Zn-Al COATING

DEPOSITED ON STEEL BY HOT-DIP GALVANIZING 128
SEGREGATION MECHANISM OF Al-BASED OXIDES ON Zn-0.2MASS%Al HOT-DIP GAL- VANIZED STEEL SHEETS 135
ELECTROGALVANIZING - PROCESS AND PRODUCT DEVELOPMENTS
INFLUENCE OF ELECTROLYTE COMPOSITION AND TEMPERATURE ON ENERGY DEMAND AND ZINC STRUCTURE DURING ELECTRO-GALVANIZING 104 292
EFFECT OF THIOGLYCOLIC ACID ON THE MORPHOLOGY OF Zn ELECTRODEPOSITED ON STEEL SHEETS 62
PREDICTION OF ANODE LIFE TIME IN ELECTRO GALVANIZING LINES BY BIG DATA ANALYSIS 192
IMPACT OF SURFACE TOPOGRAPHY OF ELECTRO GALVANIZED STEEL SHEET ON PAINT APPEARANCE 187
FUNDAMENTALS ON ABSORPTION OF HYDROGEN FUNDAMENTALS ON ATMOSPHERIC CORROSION AND CORROSION MODELLING
RELATIONSHIP BETWEEN HYDROGEN ABSORPTION AND CORROSION BEHAVIOR OF ELECTROGALVANIZED STEEL SHEETS IN DRY-WET CORROSION ENVIRON-MENT 78
RECENT ADVANCE IN CORROSION MONITORING OF ATMOSPHERIC CORROSION OF GALVANISED STEEL AND ZINC ALLOYED COATED STEEL 4
APPLICATION OF DATA SCIENCE TO ATMOSPHERIC CORROSION PREDICTION 101 340
ANALYSIS OF COSMETIC CORROSION BEHAVIOR BY IN-SITU OBSERVATION IN WET AND DRY CONDITIONS 79
ATMOSPHERIC CORROSION BEHAVIOURS OF AUTOMOTIVE STEEL SHEETS EXPOSED IN EAST AND SOUTH-EAST ASIA REGIONS 28
FUNDAMENTALS ON SELECTIVE OXIDATION OF AHSS
SELECTIVE OXIDATION OF Fe-Mn (1WT.%) BINARY ALLOY DURING CONTINUOUS ANNEALING 108
SELECTIVE OXIDATION IN A BAKE HARDENING STEEL FOR DFF - RTF ANNEALING CYCLES 92
EFFECT OF PRIOR Ni PLATING ON SELECTIVE OXIDATION BEHAVIOR AND GAL- VANISABILITY OF HIGH STRENGTH STEEL 16
FUNDAMENTALS ON SURFACE OXIDATION AND METALLIC REACTIONS 394
GALVANIZING OF TRIP-Si STEELS 107
EFFECT OF PROCESS ATMOSPHERE DEW POINT AND MINOR Sn ADDITION ON THE SELECTIVE OXIDATION DURING INTERCRITICAL ANNEALING OF A MEDIUM-Mn THIRD GENERATION ADVANCED HIGH STRENGTH STEEL 18 404

UNDERSTANDING THE EVOLUTION OF SURFACE OXIDES UPON DUAL PHASE STEELS DURING AN ANNEALING CYCLE 191
UNIQUE SIMULTANEOUS RAPID COOLING AND ZINC COATING TECHNOLOGY - NO BAINITE BEFORE ZINC POT 106
ENHANCEMENT OF HOT DIP GALVANIZING ON AS-CAST HIGH-Mn STEEL BY FABRICATION OF FUNCTIONALLY GRADED MULTILAYERS THROUGH LASER CLADDING OF LOW CARBON STEEL 200
FUNDAMENTALS ON SURFACE OXIDATION AND WETTABILITY
IMPROVEMENT OF WETTABILITY BETWEEN STEEL AND LIQUID Zn-Al ALLOY BY FORCED WETTING 206
MITIGATION OF THE ADVERSE EFFECTS OF INCREASING SI CONTENT IN A CMnSi ADVANCED HIGH STRENGTH STEEL VIA CONTROLLING ANNEALING ATMOSPHERE pO2 AND MINOR Sn ADDITION DURING CONTINUOUS GALVANIZING 20 453
AHSS SURFACE OXIDE PHASE FORMATION DURING ANNEALING AND PREDICTING THEIR TYPE USING GIBBS ENERGY MINIMIZATION (GEM) THERMODYNAMIC PRINCIPLE 43
REACTIVE WETTING OF MEDIUM-Mn ADVANCED HIGH-STRENGTH STEELS BY A Zn-Al-Mg BATH 27
FURNACE I - TEMPERATURE CONTROL CHALLENGES
NONLINEAR MODEL PREDICTIVE TEMPERATURE CONTROL OF A COMBINED DIRECT-AND INDIRECT-FIRED STRIP ANNEALING FURNACE 82
EFFECT OF ANNEALING ATMOSPHERE AND STEEL ALLOY COMPONENTS ON SURFACE TOPOGRAPHY AND RADIATIVE PROPERTIES OF ADVANCED HIGH STRENGTH STEEL STRIP DURING CONTINUOUS GALVANIZING 125 493
INCREASING LIFETIME OF METALLIC RADIANT TUBES IN VERTICAL GALVANIZING LINES 118
APPLICATION OF A PHYSICS-BASED EMPIRICAL MODEL FOR ESTIMATION OF RADIANT TUBE TEMPERATURES IN A GALVANIZING LINE 86
FURNACE II - CURRENT TOPICS FROM PREOXIDATION TO GALVANNEALING 525
SIMULATION OF FLASH PRE-OXIDATION IN AN ANNEALING SIMULATOR 170 525
ArcelorMittal GENT PRODUCES 3rd GEN. AHSS INCL. Q&P ON THE UNIQUE ANNEAL-ING FURNACE FROM ANDRITZ 49
MULTILAYER ANGULAR ROLL MODEL FOR ONLINE CONTINUOUS CONTROL OF GAL- VANIZING LINES DRIVEN BY FURNACE MATHEMATICAL MODEL 102 543
FURNACE III - RAPID COOLING, FURNACE ROLL COATINGS
EXPERIMENTAL AND NUMERICAL STUDY OF GAS JET COOLING AT HIGH REYNOLDS NUMBER 203

INVESTIGATION OF "BUILD-UP" GROWTH BEHAVIOUR ON HEARTH ROLLS OF CONTINUOUS GALVANIZING LINE 25
NON STICKING FURNACE ROLLS FOR STEEL PRODUCTS TO IMPROVE SERVICE LIFE AND PRODUCT QUALITY IN CONTINUOUS ANNEALING AND GALVANIZING LINES: PRELIMINARY STUDY ON CHEMICAL INTERACTIONS AND PICKUP MECHANISM 117
DEVELOPMENT OF AN ADVANCED ULTRA-FAST COOLING SECTION 153 581
FUTURE ASPECTS OF AUTOMOTIVE AND STEEL INDUSTRY
AUTOMOTIVE INDUSTRY – QUO VADIS 227
WAYS TO REDUCE CO2 EMISSIONS IN IRON AND STEELMAKING IN EUROPE 221 603
HDG BATH HARDWARE
A SIMPLE MODEL TO ESTIMATE AND TRACK THE WEAR RATE OF POT BEARINGS 93
OFFLINE SIMULATION OF GALVANISING BATH JOURNAL BEARINGS AS A COST EFFECTIVE SOLUTION TO IMPROVE LINE PERFORMANCE AND MITIGATE RISK 110 625
DG COATING FORMATION DROSS MANAGEMENT
INFLUENCE OF ALCONTENT IN THE ZN BATH ON GALVANIZED COATING FORMATION OF HIGH STRENGTH STEELS 157
OPTIMAL CONTENT OF ALUMINUM IN ALUMINUM-ZINC ALLOY IN HOT-DIP COATING ON THE STEEL STRIP 155
A MODELING FRAMEWORK FOR TOP SKIMMING FORMATION IN GALVANIZING BATH 50
CFD-DPM MODELLING AND ANALYSIS OF DROSS PARTICLE DYNAMICS IN HOT-DIP GALVANIZING BATHS 123
HDG POT PRODUCTIVITY 174
HDG COATING WEIGHT CONTROL BY INNOVATIVE TECHNOLOGICAL CONCEPTS 682
THE EVOLUTION OF COATING CONTROL SYSTEMS AS THE NEED FOR NEW COATED PRODUCTS EXPANDS 209
POT ROLL GEOMETRY AND CROSSBOW CORRECTION 1 695
THE BEHAVIOR OF LIQUID ZINC FLOW IN FULL SPLASHING 91
EASY ANALYSIS OF AIR KNIFE PERFORMANCE BY STATIONARY FLOW CALCULATIONS 94
ONLINE PHASE FRACTION MEASUREMENT IN A CONTINUOUS ANNEALING FURNACE WITH X-CAP® TECHNOLOGY 70
HDG COATING WEIGHT CONTROL BY NOZZLE DESIGN SETTINGS 733

PRODUCTION OF HEAVY COATING AT LOW SPEED 6
A NOVEL MULTI-SLOT AIR-KNIFE DESIGN FOR LIGHTER MORE CONSISTENT COATING WEIGHTS IN THE GAS JET WIPING PROCESS 175
EFFECT OF INITIAL VELOCITY DISTRIBUTIONS IN THE TRANSITION REGION IMPINGE- MENT OF SLOT-JET 24
WIPING PRESSURE DYNAMICS AND THEIR EFFECTS ON GALVANIZING COATING SMOOTHNESS 51
WIPING PILOT USE FOR BAFFLE DESIGNS AND SETUP IMPROVEMENTS 208 787
INDUSTRIAL STATUS OF GALVANIZING PRODUCTION TECHNOLOGY 792
HOT-DIP GALVANIZING LINES - CHALLENGES AND SOLUTIONS FOR THE INDUSTRIAL PRODUCTION OF COATED 3rd GEN AUTOMOTIVE STEELS 75 792
FIVES' EYERON™, ALL-IN-ONE QUALITY MANAGEMENT SOFTWARE 150 797
EFFICIENT AND EFFECTIVE OPERATION OF A HOT DIP GALVANIZING LINE 124 806
THROUGH-PROCESS OPTIMIZATION (TPO) - A MODERN APPROACH TO RAPID PROD- UCT DEVELOPMENT 113
NEWEST GENERATION OF METRIS ADVANCED FURNACE CONTROL FULFILS HIGHEST QUALITY DEMANDS 115
LME OF RESISTANCE SPOT WELDED COATED STEELS: ASSESSMENTS 829
APPLICATION-ORIENTED AVOIDANCE OF LIQUID METAL EMBRITTLEMENT DURING RESISTANCE SPOT WELDING OF ZINC-COATED ADVANCED HIGH STRENGHT STEELS 224
EVALUATION OF INITIATION AND PROPAGATION OF LME CRACKS ON THE GAL- VANIZED 3G-AHSS USING INTERRUPTED RESISTANCE SPOT-WELDING METHOD 38829
COMPARATIVE ASSESSMENT OF GI AND GA COATED AHSS LME SENSITIVITY DURING SPOT WELDING 173
NUMERICAL MODEL FOR PREDICTING LIQUID METAL CRACKING DURING RESISTANCE SPOT WELDING OF ADVANCED HIGH STRENGTH STEELS 202 849
TANCE SPOT WELDING OF ADVANCED HIGH STRENGTH STEELS 202 849
TANCE SPOT WELDING OF ADVANCED HIGH STRENGTH STEELS 202 849 LME OF RESISTANCE SPOT WELDED COATED STEELS: MOVING TOWARD SOLUTIONS 859 EFFECT OF Zn-COATING PROCESS ON LIQUID METAL EMBRITTLEMENT OF TRIP

MECHANICAL PROPERTIES AND CRACKING BEHAVIOR OF HOT-DIP GALVANIZED ZnAlMg COATINGS 48
DEVELOPMENT OF ADVANCED PRE-PAINTED Zn-11%Al-3Mg-0.2%Si COATED STEEL SHEETS 53
DEVELOPMENT OF ONE LAYER PRE-PAINTED STEEL SHEET 55
ON-LINE MEASUREMENTS - CLEANLINESS, AUSTENITE FRACTION AND COATING DEFECTS
CLEANLINESS MEASUREMENT BY INNOVATIVE LIBS METHOD 190 906
PRODUCER EXPERIENCES AND ADVANCEMENTS WITH AN ONLINE, NON-CONTACT SURFACE CLEANLINESS MONITOR 163
NEW APPROACH FOR ONLINE AUSTENITE FRACTION MEASUREMENT FORMED DURING CONTINUOUS ANNEALING PROCESS. PART I: MEASURE ON HIGH STRENGTH MICROALLOYED STEEL GRADES 7
IN-LINE CHARACTERISATION OF THE AUSTENITE LEVEL TO ENSURE THE MECHANICAL PROPERTIES ALONG THE COIL 186
SIAS® 4.0 - THE NEXT GENERATION OF AUTOMATIC SURFACE INSPECTION SYSTEM USING CONVOLUTIONAL NEURON NETWORK FOR DETECTION AND CLASSIFICATION OF SURFACE DEFECTS 120
ON-LINE MEASUREMENTS AND GALVANIZING BATH CONTROL DEVELOPMENT BATH AL CHEMISTRY EFFECTS ON COATING QUALITY AND BATH MANAGEMENT 995
AN INTEGRATED METHODOLOGY FOR THE ROOT CAUSE ANALYSIS OF MECHANI- CAL AND METALLURGICAL DEFECTS OF HOT-DIP GALVANIZED COATINGS 127 995
INSPECTING SURFACE QUALITY OF GALVANIZED STEEL BY DEEP LEARNING 223 . 964
IN-LINE BATH CHEMISTRY MONITORING: REVOLUTIONARY RELIABILITY OF THE NEW DIODE-BASED LASER INDUSTRIAL LIBS SENSOR 158
CELES ECOTRANSFLUX™, A DISRUPTIVE TECHNOLOGY FOR HEATING GEN3 AHSS 98
ORIGINS OF HYDROGEN EMBRITTLEMENT
EFFECT OF ANNEALING ATMOSPHERE ON HYDROGEN EMBRITTLEMENT OF AD- VANCE HIGH STRENTH STEEL 60
INFLUENCE OF Zn-BASED COATING ALLOYS ON HYDROGEN DIFFUSION AND COR- ROSION RESISTANCE IN A DP STEEL 95
CHARACTERIZATION OF RESIDUAL STRESSES AT SHEARED, MILLED AND LASER CUT EDGES IN MARTENSITIC STEELS 114
INVESTIGATIONS ON CORROSION BEHAVIOR AND HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF GALVANIZED DUAL-PHASE STEEL 183
IN SITU INVESTIGATION OF HYDROGEN ENTRY AND HYDROGEN EMBRITTI EMENT

OF ZINC-COATED HIGH STRENGTH STEELS INDUCED BY ATMOSPHERIC CORROSION 167
PHS-ALSI PHS-ZNFE: CONTROLLING SURFACE PROPERTIES
NEW COATING FOR PRESS HARDENED STEELS: AlSiZnMg 207
ON THE REDUCTION OF TEMPERATURE GRADIENTS WITHIN Alsi-COATED BLANKS WITH NON-CONSTANT SHEET THICKNESS FOR HOT PRESS FORMING APPLICATION 201
INFLUENCE OF OXIDE COMPOSITION AND SHOT BLASTING PARAMETERS ON SURFACE RESISTANCE OF GALVANIZED PRESS HARDENED STEELS 185
NANOSCALE STRUCTURE AND COMPOSITIONAL ANALYSIS OF SURFACE OXIDES ON HOT-DIP GALVANIZED PRESS-HARDENED STEEL 180
PHS-ZNFE: LIQUID AND VAPOUR METAL INDUCED EMBRITTLEMENT
AVOIDING ZINC INDUCED CRACKING IN HOT FORMING 189
THE EFFECT OF Si ADDITION ON Zn-ASSISTED LIQUID METAL EMBRITTLEMENT IN 22MnB5 PRESS HARDENING STEEL 143
SCANNING ELECTRON MICROSCOPE INVESTIGATION ON ZINC INDUCED CRACKS OF COATED PRESS HARDENED COMPONENTS 199
ON THE ORIGIN OF MICRO-CRACKING IN ZINC COATED PRESS HARDENED STEELS 19
DEVELOPMENT OF A Zn-Al-Mn-Sb ALLOY COATING FOR PRESS HARDENABLE STEELS 99
PHS-ZNFE: NEW STEEL COATING DEVELOPMENTS
DEVELOPMENT OF NEW GRADES OF Zn-COATED PRESS-HARDENABLE STEEL COMPATIBLE WITH THE CONTINUOUS GALVANIZING LINE 15
NANOSCALE INVESTIGATION OF GRAIN BOUNDARY WETTING AND MICRO CRACKS OF PRESS HARDENED GALVANIZED 20MnB8 STEEL 188
THE MECHANICAL PROPERTIES AND CRYSTAL STRUCTURE OF Fe-Zn SOLID-SOLUTION IN HOT-STAMPED GA COATING 30
PHYSICAL VAPOUR DEPOSITION
JET VAPOUR DEPOSITION: A TECHNICAL ECONOMIC ALTERNATIVE TO ELECTRO-GALVANIZING FOR Zn COATINGS OF FUTURE STEELS 172
FEEDING TECHNOLOGY FOR A CONTINUOUS PVD COATING LINE 179
MECHANISMS STABILIZING GENERAL VAPOUR-PHASE GALVANIZING 154
POSTERS
INFLUENCE OF INTERCRITICAL ANNEALING CYCLES ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF DP980 ADVANCED HIGH-STRENGTH STEEL

194	
THE PROPOSAL FOR IMPROVEMENT OF INTERSTITIAL FREE STEEL MECHANICAL PROPERTIES IN CGL PROCESS 148	63
EFFECT OF THE ATMOSPHERE DEW POINT OF CONTINUOUS ANNEALING FURNACES ON THE QUALITY OF GA COATING ON BAKE HARDENING STEEL 12	71
SIMULATION AND OPTIMISATION OF A WIPING KNIFE ON THE LAB SCALE 111 11	80
NUMERICAL SIMULATION OF BUILD-UP GROWTH COUPLED WITH HYDRODYNAM-ICS 178	92
STUDY ON CORROSION RESISTANCE AND ADHESION OF PAINT COATED ZN-AL-MG GALVANIZED STEEL 71	*
NEW ZnAlmg Alloy Coatings with ultra high corrosion resistance 58 .12	01
DEVELOPMENT OF NEW AI COATED STEEL WITHOUT LME CRACKS AND EXCELLENT CORROSION 57	10
CONTINUOUS ANNEALING TEMPERATURE INFLUENCE ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF GALVANIZED DUAL PHASE STEEL (DP980) 126	16
KINETICS OF WÜSTITE FORMATION IN SHORT TIME ON PURE IRON IN THE GAS MIXTURE OF CO2+CO OR H2O+H2 130	25
NEW INDUSTRIAL ACRYLIC RESIN COIL-COATING BOTH ON MECHANICALLY PATTERNED GI AND STS SHEETS 64	*
INFLUENCE OF DROSS BUILD-UP INDUCED ROUGHNESS ON FLOW STRUCTURES AND HEAT-TRANSFER OF SINK ROLLS IN HOT-DIP GALVANIZING LINES 83	*
AN OPTIMIZATION OF SPANGLE MINIMIZER FOR Al-Si COATED STEEL SPANGLE CONTROL 69	*
FAST AND NON-DESTRUCTIVE METHOD FOR PHASE QUANTIFICATION IN ZINC ALLOYED COATED STEEL SHEET 122	*
HOW MODEL PREDICTIVE CONTROL ENHANCES STRIP TEMPERATURE REGULATION 97	*
EFFECT OF AI CONTENT ON THE CORROSION BEHAVIOR IN Mg-Zn-Al ALLOY COATED STEEL SHEET 42	*
THROUGH-PROCESS QUALITY CONTROL (TPQC) SYSTEM - ANY DATA, ANY TIME 166	*
SCHEDULING SOLUTIONS SUPPORT SUSTAINABLE PRODUCT QUALITY OF GALVANIZED COILS BY PROVIDING PRODUCTION SCHEDULES IN REPEATABLE QUALITY 116	*
IN-LINE SEAM WELD INSPECTION USING LASER-ULTRASONICS: RESULTS FROM AN INDUSTRIAL TRIAL 159	*
POT OPTIMIZATION BY NUMERICAL SIMULATION AND MATERIAL DEVELOPMENT	1236

FLOW PATTERN ANALYSIS INSIDE AN IMMERSING SNOUT WITH A PARAMETIC SIM- ULATION MODEL 134
SNOUT TEMPERATURE PREDICTIVE MODEL AND Zn POT THERMAL BALANCE 5 . 1247
Zn VAPOUR INDUCED CORROSION OF 253 MA STAINLESS STEEL END PLATE AND FLANGE IN RETRACTABLE SNOUTS 9
EFFECTS OF HEAT TREATMENTS ON THE MORPHOLOGY AND MECHANICAL PROPERTIES OF A CoCrW ALLOY FOR HOT DIP GALVANISING APPLICATIONS 1461265 $$
THE MODIFICATION PROCESS OF THE DROSS BUILD-UP STRUCTURE ON SUBMERGED HARDWARE IN Zn-Al AND Zn-Al-Mg BATHS 168
SOLIDIFICATION AND FORMATION OF HOT DIP GALVANIZED COATINGS
INFLUENCE OF SURFACE ROUGHNESS OF FULL HARD STEEL ON SPANGLE OF GAL- VANIZED STEEL AND ACTUAL APPLICATION RESULTS 41
SPANGLE NUCLEATION AND REFINEMENT THEORY IN 55%Al-Zn COATED STEEL 8 1292
PERITECTIC STRUCTURE EVOLUTION IN HOT-DIP Zn-Al ALLOY COATINGS 80 1302
RAPID DESIGN OF NEW Zn-Mg-Al-Sn COATINGS WITH LOW MELTING POINT FOR AUTOMOTIVE SHEET APPLICATIONS VIA MACHINE LEARNING 59
STEEL-COATING INTERFACIAL LAYER AND COATING PHASE DEVELOPMENTS 1321
FORMATION SEQUENCE OF Fe-Al INTERMETALLIC PHASES IN HOT-DIP Zn-Al-Mg ALLOY GALVANIZED STEELS 133
QUANTITATIVE EVALUATION OF NANOSCALE MECHANICAL PROPERTIES OF Zn-Al AND Zn-Al-Mg COATINGS ON STEEL SHEET BY NANOINDENTATION 35 1329
IN-SITU OBSERVATION OF THE CRYSTALLIZATION AND GROWTH BEHAVIOR OF Fe-Zn INTERMETALLIC COMPOUND ("BOTTOM DROSS") IN THE MOLTEN ZINC USING X-RAY TRANSMISSION IMAGING METHOD 72
STRUCTURAL AND MECHANICAL CHARACTERIZATIONS OF TOP DROSS IN A MOLTEN ZINC BATH 66
INVESTIGATION OF ORANGE PEEL DEFECT ON GALVANIZED DP STEEL SHEET 131 1354