22nd Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS 2021)

Maui, Hawaii, USA 14 – 17 September 2021

Volume 1 of 3

ISBN: 978-1-7138-3863-0

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2021) by Maui Economic Development Board, Inc. All rights reserved.

Printed with permission by Curran Associates, Inc. (2022)

For permission requests, please contact Maui Economic Development Board, Inc. at the address below.

Maui Economic Development Board, Inc. 1305 N. Holopono Street, Suite 1 Kihei, Hawaii 96753 USA

Phone: 1.808.875.2300 Fax: 1.808.879.0011

www.medb.org

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400

Fax: 845-758-2633

Email: curran@proceedings.com Web: www.proceedings.com

202I AMOS CONFERENCE PROCEEDINGS

CISLUNAR SSA	
Co-chaired by James Frith , Air Force Research Laboratory and Jesse Greaves , University of Colorado Boulder	
INVITED TALK	
The Space S&T Challenges from LEO to Cislunar	15
Tracking Objects in Cis-Lunar Space: The Chang'e 5 Case	16
Hiding in Plain Sight: Observing Objects in Low Lunar Orbit and the L2 Dark Cone from a Lunar Surface Observatory	22
Risk Maps for Conjunction Potential Throughout the Cislunar Domain	38
Cislunar Multiscale Dynamics and Implications for SSA	52
Robust Cislunar Initial Orbit Determination	67
CONJUNCTION/ RENDEZVOUS AND PROXIMITY OPERATIONS	
Co-chaired by James Blake, University of Warwick, Darren McKnight, LeoLabs, and Matthew Stevenson, LeoLabs	
Overcoming the Operational Challenges Encountered during a Decade of Conjunctions	83
Electric Propulsion Intelligent Control (EPIC) Toolbox for Proximity Operations in Low-Earth Orbit (LEO)	95
Axel Garcia Burgos, Massachusetts Institute of Technology	
Space Situational Awareness (SSA) Activities Explored through the ELSA-d Mission	111
An Investigation into Potential Collision Maneuver Guidelines for Future Space Traffic Management	120
Mariel Borowitz, Georgia Institute of Technology	

In-Space Inspection Maneuver Analysis Using Trajectory Optimization.......133

Ian Connerney, Virginia Polytechnic Institute and State University

PHANTOM ECHOES 2: A Five-Eyes SDA Experiment on GEO Proximity Operations	149
SSA Positional and Dimensional Accuracy Requirements for Space Traffic Coordination and Management	168
ASTRODYNAMICS	
Co-chaired by Tom Kelecy , The Stratagem Group and Sam Wishnek , University of Colorado Boulder	
RSO Proper Elements for Space Situational and Domain Awareness Di Wu, University of California San Diego	193
Application of Novel Filtering Approaches to Modern Space Domain Awareness Jonathan Kadan, Virginia Polytechnic Institute and State University	206
Improved Orbital Predictions using Pseudo Observations - Maximizing the Utility of SGP4-XP	218
Anthony Holincheck, Sceptre Analytics	
Improving Orbital Uncertainty Realism Through Covariance Determination in GEO	229
Fragmentation Detection via Track-to-Track Association of Optical Observations	243
DYNAMIC TASKING	
Co-chaired by David Brough, Numerica and Gabe Egolf, Parsons	
FEATURED PRESENTATION Semi-Empirical Metrics to Measure the Effects of Large Satellite Constellations	
on Astronomy	256
Doyle Hall, Omitron Inc.	
Expanding the Space Surveillance Network with Space-Based Sensors Using	
Metaheuristic Optimization Techniques Cameron Harris, Virginia Polytechnic Institute and State University	271
A Deep Reinforcement Learning Application to Space-based Sensor Tasking for Space	
Situational Awareness	284
Thomas G. Roberts, Massachusetts Institute of Technology	
SNARE (Sensor Network Autonomous Resilient Extensible): Decentralized Sensor Tasking Improves SDA Tactical Relevance	207
Robert Carden, MITRE	291
Multi-Space-Object Tracking with the Poisson Labeled Multi-Bernoulli (PLMB) Filter & Probabilistic Admissible Region Constraints	310
Leonardo Cament. Universidad de Chile	

OPTICAL SYSTEMS & INSTRUMENTATION

Co-chaired by Bradford Barrett, Air Force Office of Scientific Research, Matthew Bold, Lockheed Martin, and Stacie Williams, Air Force Office of Scientific Research

FEATURED PRESENTATION The National Science Foundation's Daniel K. Inouye Solar Telescope Thomas Rimmele, National Solar Observatory	325
Reducing Weight of Imaging Systems with Flat Lenses	338
Operations Update for the Deformable Mirror Demonstration Mission (DeMi) CubeSat	344
Analysis of Wavefront Sensing Techniques for Extended Scene Imaging Justin M. Knight, University of Arizona	357
Transformation of the Space Surveillance Telescope into a Dedicated Sensor in the Space Surveillance Network	372
Design and Predicted Performance of 4-m Baseline Habitable-zone Exoplanet Observatory Telescope	379
Characterization of The Eugene Stansbery-Meter Class Autonomous Telescope on Ascension Island	390
Synthetic-Aperture Silhouette Imaging (SASI): Laboratory Demonstration Traceable to Ground-Based Imaging of GEO Satellites	402
Polarimetric 3D Imaging in Degraded Environments	410
Optomechanical Design and Fabrication of a Wide Field of View 250-mm-aperture Freeform Imaging System	418
Event-based Sensor Model for Space Domain Awareness	433
Development and Testing of a Novel Low-Cost LEO Optical Surveillance Sensor Borja Del Campo Lopez, Deimos Space UK Ltd.	445

ATMOSPHERICS/SPACE WEATHER Co-chaired by Randall Alliss, Northrop Grumman and Brandon "BT" Cesul, KBR 2021 AMOS STUDENT AWARD WINNER Application of SoleiTool for Density Estimation using CubeSat GPS Data.......455 Shaylah Mutschler, University of Colorado Boulder Decorrelating Density and Drag-coefficient through Attitude Variations.......470 Vishal Ray, University of Colorado Boulder Jill Platts, AFRL/RISA Accelerated Al Powered Atmospheric Predictions for Space Domain Awareness Applications......501 Danny Felton, Northrop Grumman The Solar Particle Access Model (SPAM): A New Tool for Monitoring Solar Energetic Particle Impacts to Satellite Operations......515 Janet Green, Space Hazards Applications, LLC NON-RESOLVED OBJECT CHARACTERIZATION Co-chaired by Heather Cowardin, NASA Johnson Space Center, Weston Faber, L3 Harris, and Zach Gazak, Odyssey Systems Inversion of the Shape of Space Debris from Non-resolved Optical Measurements David Vallverdu Cabrera, Airbus Defence and Space GmbH Spectral Characterization of 2020 SO......544 Vishnu Reddy, University of Arizona Kameron Simon, Kratos Automated Multi-Sensor Data Fusion Using the Unified Data Library.......556 Kristen Haynes, Applied Optimization Inc. Comparing Photometric Behavior of LEO Constellations to SpaceX Starlink using a Chance Johnson, Defence R&D Canada Studying the Potential of Hyperspectral Unmixing for Extracting Composition of Jiarui Yi, The University of Texas at El Paso Extending Laboratory BRDF Measurements towards Radiometric Modeling of Resident Gregory Badura, Georgia Tech Research Institute

Using AI to Analyse Light Curves for GEO Object Characterisation Emma Kerr, Deimos Space UK Ltd.	639
Rapid Discrimination of Resident Space Objects Using Near-Infrared Photometry Eric Pearce, University of Arizona Steward Observatory	648
SPACE SITUATIONAL/DOMAIN AWARENESS	
Co-chaired by Moriba Jah, University of Texas at Austin and Danielle Wood, Space Enabled Research Group, MIT Media Lab	
INVITED TALK AFRL Support to Space S&T Dr. Kelly Hammett, Air Force Research Laboratory	657
Safety Norms for Space Security: How the Development of STM Norms Can Strengthen Security in Space	650
Daniel Porras, Secure World Foundation	050
Test on the New SSA System of JASDF	664
Ryotaro Sakamoto, Japan Air Self Defense Force	004
Swedish National Interests in Space Situational Awareness	669
The Australian Space Agency's Inaugural Space Situational Awareness Technology Roadmap: Context, Methodology and Learnings	677
Report on 2020 Megaconstellation Deployments and Impacts to Space	
Domain Awareness	684
Ryan Hiles, Omitron, Inc.	
Doppler and Angle of Arrival Estimation from Digitally Modulated Satellite Signals in Passive RF Space Domain Awareness	60/
Mohd Noor Islam, Clearbox Systems	094
Daytime Optical Contributions Toward Timely Space Domain Awareness in Low Earth Orbit	708
Jeff Shaddix, Numerica Corporation	1000000
Geosynchronous Satellite Maneuver Identification and Characterization using Passive RF Ranging	721
Austin Beer, Kratos	
System Approach to Analyse the Performance of the EU Space Surveillance and Tracking System	733
Jose Maria Hermoso, CDTI	

Adapting New Processes to Support Improved Space Based Surveillance	
Ground Operations	.754
Shawn Abernethy, Stratagem Group	
Enhanced Standard Data Format for Reporting Electro-Optical Data Products for Space Domain Awareness	.776
Tamara Payne, Applied Optimization Inc.	
MACHINE LEARNING FOR SSA APPLICATIONS	
Co-chaired by Islam Hussein, Trusted Space and Charlotte Shabarekh, MIT Lincoln Laborate	огу
Toward Deep-space Object Detection in Persistent Wide Field of View Camera Arrays	.781
Geosynchronous Satellite Maneuver Classification via Supervised Machine Learning Thomas G. Roberts, Massachusetts Institute of Technology	.794
Toward using Machine Learning Models for Data Association and Maneuver Classification of Resident Space Objects	.813
Triet Tran, Cornerstone Consulting & Services, LLC	
Inferring Space Object Orientation with Spectroscopy and Convolutional Networks Matthew Phelps, United States Space Force	.831
Detection & Identification of On-Orbit Objects Using Machine Learning	.848
Pixelwise Image Segmentation for RSO Detection of GEO Spacecraft Douglas Woodward, The Aerospace Corporation	.860
Incremental Learning of Novel Resident Space Object Spectral Fingerprints	.866
Time Forecasting Satellite Light Curve Patterns using Neural Networks	875
POSTER PRESENTATIONS	
Light Curve Analysis of Deep Space Objects in Complex Rotation States	891
Photometric and Spectral Calibration of the Falcon Telescope Network Ethan Albrecht, U.S. Air Force Academy	.900
SDA Environment Toolkit for Defense (SET4D) – Enabling Attribution for Orbital Assets and Electro-magnetic Spectrum Links Through Streamlined R2O	

On the Impact of Tactical Track Loading on Volume Revisit Performance and the Role of Augmenting Hosted Payloads – A GEO Space Domain Awareness Challenge	925
A Visible Spectroscopic Atlas of Geostationary Satellites	934
Radar-Derived Spin States of Defunct GEO Satellites and Rocket Bodies Conor Benson, University of Colorado Boulder	940
NGSatSentry: On-Orbit Detection System for Space Domain Awareness	951
A Study of Measuring Beam Wander from Stars for Ground-based Laser Illumination	967
Nazim Bharmal, Durham University	
Artificial Debris Collision Risk Following a Catastrophic Spacecraft Mishap in Lunar Orbit	974
Nathan Boone, Air Force Institute of Technology	
Bayesian Approach to Light-Curve Inversion of 2020 SO	986
Space Systems Center Special Programs Advanced Technology Integration Future Space Domain Awareness Hosted Payloads	991
Simplified Conjunction Analysis using a Graph Database for Identifying High Risk Objects	997
Janet Cathell, Sceptre Analytics	
2021 BEST PAPER AWARD WINNER Cislunar Orbit Determination Behavior: Processing Observations of Periodic Orbits with Gaussian Mixture Model Estimation Filters	1003
C. Channing Chow II, Cloudstone Innovations LLC	
Utilization Potential for Distinct Orbit Families in the Cislunar Domain	1015
Maximizing the Utility of Non-Traditional Sensor Network Data for SDA Neil Dhingra, Orbit Logic Incorporated	1028
Machine Learning for Launch Assessment: The Similarity-Based Launch Classification Tool (SLCT)	1043
Michal Dichter, Applied Technology Associates, a BlueHalo Company	
Compact Solutions for Detecting Space and Ground Based Optical Threats to Satellites	1051
came on promitoring more opace nobolico a operations	

Qualifying and Reducing Neutral Density Uncertainty for Precise Orbit Determination	
using Physics-Based Data Assimilations	1060
Nicholas Dietrich, University of Colorado Boulder	
Preliminary Orbit Determination Using the Transit of Satellites in Front of Space-Based	
Illumination Sources	1077
Daniel Dombrowski, Air Force Institute of Technology	
Flexible Closed Loop Feedback Control Architecture for SDA Payloads David T. Ellis, Ball Aerospace	1090
A Regional Greedy Algorithm for Space Domain Awareness Resource Allocation	1097
Spooky Coordinated Tasking and Estimation on Uninformative Priors	1108
Intrinsic Fault Resistance for Nonlinear Filters with State-Dependent Probability of Detection	1124
Gunner Fritsch, Texas A&M University	
Detection of Background Stars over an Artificial Satellite Pass using Blob Detection Algorithms	1147
André Gaudin, University of Canterbury	
Characterization of Orbital Debris Attributes Using Functional Data Analysis Emily Gerber, L3Harris	1161
Relative Estimation in the Cislunar Regime using Optical Sensors Jesse Greaves, University of Colorado Boulder	1179
Establishing Consensus Between Implicitly Updated Decentralized Probability Distribution Functions	1200
Juan Gutierrez, KBR	
Photometric Characterization and Trajectory Accuracy of Starlink Satellites	1216
An Adaptive, Non-singular Measurement Model for Angles-only Orbit Determination and Estimation	1219
James Hippelheuser, University of Central Florida	
Dynamic Model Integration and Simulation Engine (DMISE) Assisted Design of Future	
Sensor Networks in Support of Space Traffic Management Douglas Hope, Georgia Tech Research Institute	1230
Headline-based Human-Computer Interface to Aggregate Space Indications and Warnings	1244
John Janni, Air Force Research Laboratory (AFRL)	

Asteroid Detection and Risk Prediction for the Earth Tulika Jain, Shah & Anchor Kutchhi Engineering College	1263
Observations of Satellites Using Near-Simultaneous Polarization Measurements	1276
Data Fusion of Historical Space Weather Outliers and Satellite Anomalies	1290
Novel Closed Form Solution for Orbit Segment Altitude Extrema Over Spherical and Oblate Central Bodies	1297
Use of Ground Stations of ERS Data Reception in the Interest of Space Situational Awareness	1307
Oleksandr Kozhukhov, National Space Facilities Control and Test Center of State Space Agency of Ukraine	
Characterizing the All-Sky Brightness of Satellite Mega-Constellations and the Impact on Astronomy Research	1316
Space Command and Control Program - Kobayashi Maru Jennifer Krolikowski, SMC/ECXC	1342
Light Scattering Properties of a Solar Panel including Wavelength and Polarization Dependencies in the Visible Spectrum	1348
The Efficacy of Limiting Catastrophic Fragmentations in Low Earth Orbit by Regulating Probability of Collision with Large Objects	1361
Discovering 3-D Structure of LEO Obects	1370
Developing A Virtual Assistant for Space Operations Jeremy Ludwig, Stottler Henke Associates, Inc.	1377
Observations of Space Object 2020 SO Using 8-inch f/2 Schmidt Astrograph Tim McLaughlin, Pine Park Engineering Corp	1382
Earthshine: A Paradigm Shift for Daylight Imaging and Custody of LEO Satellites	1393
A Subset Simulation Based Technique for Calculating the Probability of Collision	1412
Self-Supervised Auxiliary Task Learning for Estimating Satellite Orientation	1421

A New Statistical Estimate of the Radar Coverage of the Low Earth Orbit	
Debris Environment	1430
Chris Ostrom, HX5 Jacobs JETS Contract, NASA Johnson Space Center	
Threats Prediction to a Satellite by Detected Asteroids	1441
Re-entry Event of CZ-3B R/B Observed by All-sky Meteor Cameras AMOS Veronika Pazderov, Comenius University	1457
Survey on New Strategies and State of the Art for Space Debris Catalogue Generation for Optical Sensor Networks	1467
Debris Cloud Structure in Medium Earth Orbit	1480
Marielle Pellegrino, University of Colorado Boulder, The Charles Stark Draper Laboratory Inc.	
Clustering-Based Uncorrelated Track Association	1499
Polarimetric Space Situational Awareness using the Aero-Optical Prediction Tool	1511
Share My Space Multi-telescope Observation Stations Performance Assessment	1522
Dual Use Star Tracker and Space Domain Awareness Sensor In-Space Test Elozor Plotke, LinQuest Corporation	1553
Performance of Northrop Grumman's Mission Extension Vehicle (MEV) RPO Imagers at GEO	1567
Orbital Diversity and Inclination Optimization for Large Count LEO Constellations in Non-polar Orbits	1586
Chuck Quintero, Johns Hopkins University – Applied Physics Laboratory	
Decentralized Space Information Sharing as a Key Enabler of Trust and the Preservation of Space	1592
Multi-Target Ensemble Gaussian Mixture Tracking with Sparse Observations Benjamin Reifler, The University of Texas at Austin	1622
Patterns of Life and Maneuver Detection for Cislunar Trajectory Maintenance	1636
A Worldwide Network of Radars for Space Domain Awareness in Low Earth Orbit	1652

Modeling Energy Dissipation and De-tumbling of a Defunct a Satellite Using a Finite Element Method1664
Ryotaro Sakamoto, University of Colorado Boulder
Optical Satellite Tracking in Earth's Shadow with Non-traditional Illumination167 Kevin Schafer, MITRE
Ablative Collision Avoidance for Space Debris in the Lower Earth Orbit by a Single Multi-kJ Pulse from a Ground-based Laser
AGO70: passive optical system to support SLR tracking of space debris on LEO169. Jiří Šilha, Comenius University
Systems and Methods for Hybrid Lunar Surface and Space Domain Situational Awareness
A Three-dimensional Photometric Model of a Satellite in Geostationary Orbit171 Jovan Skuljan, Defence Technology Ageпcy
Parametric Generation of Whistler Waves in the Ionosphere
Identifying the Statistically-Most-Concerning Conjunctions in LEO
A Spoken Language Interface for SSA/SDA based on Modern Speech Processing Technology
Toward Intuitive Understanding of Complex Astrodynamics using Distributed Augmented Reality
Design Trades for Environmentally Friendly Broadband LEO Satellite Systems
Speckle Interferometry of Binary Stars with a 1m Telescope, Grounded with AO from a 1.5m
Investigating the Risks of Debris-generating ASAT Tests in the Presence of Megaconstellations
Cislunar Orbit Determination and Tracking via Simulated Space-Based Measurements
Detecting Dim Targets in Cislunar Space using GEO/HEO-based Optical Sensors183 **Darren Thornton. Air Force Institute of Technology**

The Machine Learning Enabled Thermosphere Advanced by the High Accuracy	
Satellite Drag Model (META-HASDM)	1848
W. Kent Tobiska, Space Environment Technologies	
Agile Space Object Custody for Electro-Optical Sensors	1861
Johnathan Tucker, University of Colorado Boulder	
Daytime Sky Brightness Measurements and Comparison to Analytical Models	1873
Vincent Vella, L3Harris Technologies	
Establishment of a Space Operations Squadron at the Japan Air Self-Defense Force	
in 2020: current status and future prospects	1882
Quentin Verspieren, The University of Tokyo	
Artificial Intelligence Enabled Dynamic Coalition Architecture for Space	
Traffic Management	1893
W. Thomas Vestrand, Los Alamos National Laboratory	
Object Detection from Radon Transformations using Machine Learning Techniques	1907
Thomas Walker, Lockheed Martin Australia	
Preliminary Viability Assessment of Cislunar Periodic Orbits for Space	
Domain Awareness	1915
Adam Wilmer, Air Force Institute of Technology	
Semantic Segmentation of Low Earth Object Satellites using Convolutional	
Neural Networks	1932
Julia Yang, The Boeing Company	
Trends in Global Space Situational Awareness	1944
Makena Young, Aerospace Security Project	
Establishing a Chain of Digital Forensics for Space Object Behavior Using	
Distributed Ledger Technology	1966
Waqar Zaidi, L3Harris	
A Complete SSA Scheme for a Sustainable Low Earth Orbit: Space Data Aggregation	
and IA Combined with In-orbit Inspection	1983
Selma Zamoum, SpaceAble France	
Cislunar SSA/SDA from the Lunar Surface: COTS Imagers on Commercial Landers	2001
Peter Zimmer, J.T. McGraw and Associates, LLC	
Overcoming the Challenges of Daylight Optical Tracking of LEOs	2008
Peter Zimmer, J.T. McGraw and Associates, LLC	
APPENDIX	
Conference Program	2018
List of Destining who	0000
List of Participants	2038