2022 IEEE 35th International Conference on Micro Electro Mechanical Systems (MEMS 2022)

Tokyo, Japan 9 – 13 January 2022

Pages 1-538

IEEE Catalog Number: CFP22MEM-POD ISBN:

978-1-6654-0912-4

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP22MEM-POD

 ISBN (Print-On-Demand):
 978-1-6654-0912-4

 ISBN (Online):
 978-1-6654-0911-7

ISSN: 1084-6999

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

TABLE OF CONTENTS

Monday, 10 January All times are Japanese Standard Time (JST).

In-Person Poster Session I

00 15 10 15	Th. 4 44 11 11 11		•	* 4 1 4 1 *						• • •
09:15 - 10:45	Presentations are listed b	v to	nic category	with their	r assioned	number	starting	on i	าลฮค ร	am.
07.12	I rescribe the fister of	,	pre entegory	With the	t ttbbigited	mamber	Star tring		Juge 4	

10:15 Break

	Session I - Nanomaterials and Nanostructures for MEMS	
10:45	3D ELECTRON-BEAM WRITING OF FUNCTIONAL NANOSTRUCTURES IN RECOMBINANT SPIDER SILK PROTEINS Nan Qin ¹ , Jianjuan Jiang ¹ , and Tiger H. Tao ^{1,2} ¹ Chinese Academy of Sciences (CAS), CHINA and ² University of Chinese Academy of Sciences, CHINA	1
11:00	MINIATURIZED SMA/SMP VARIABLE STIFFNESS ACTUATOR DRIVEN BY THE STRETCHABLE MWCNT/IL/PDMS HEATER ELECTRODE FOR MICROMANIPULATION ROBOTS Hirotaka Sugiura, Satoshi Amaya, and Fumihito Arai University of Tokyo, JAPAN	5
11:15	POLYANILINE-NANOSPIKES MODIFIED HYBRID NANOFIBROUS MEMBRANE BASED FLEXIBLE PIEZORESISTIVE SENSOR FOR PHYSIOLOGICAL SIGNAL MONITORING Sudeep Sharma, Ashok Chhetry, Dongkyun Kim, and Jae Yeong Park Kwangwoon University, KOREA	9
11:30	CMOS-MEMS RESONATORS WITH SUB-100-NM TRANSDUCER GAP USING STRESS ENGINEERING Hong-Sen Zheng, Chun-Pu Tsai, Ting-Yi Chen, and Wei-Chang Li National Taiwan University, TAIWAN	13
11:45	ENERGY EFFICIENT LIF NEURON CIRCUIT USING HYBRID CMOS-NEMS IN 65 NM CMOS TECHNOLOGY Sumit Saha ¹ , Prasad B. Kanakya ¹ , Mayank Goel ³ , Maryam Shojaei Baghini ¹ , and V. Ramgopal Rao ² ¹ Indian Institute of Technology, Bombay, INDIA, ² Indian Institute of Technology Delhi, INDIA, and ³ Intel Corporation, USA	17
12:00	Lunch	
	Session II - Flexible Devices	
13:00	VISUALIZED DRUG RELEASE SILK PATCH USING THERMAL NANOIMPRINTING OF PDMS TEMPLATE Xiawei Yue ^{1,2} , Tiger H. Tao ^{1,2,3,4,5} , and Jianjuan Jiang ¹ ¹ Chinese Academy of Sciences (CAS), CHINA, ² University of Chinese Academy of Sciences, CHINA, ³ ShanghaiTech University, CHINA, ⁴ Institute of Brain-Intelligence Technology, CHINA, and ⁵ Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, CHINA	21

13:15	MULTIFUNCTIONAL CONTACT LENS SENSOR FOR TEAR PROTEIN ANALYSES	25
13:30	BIOSENSOR PLATFORM FOR SIMULTANEOUS MEASUREMENT OF MECHANICAL AND ELECTROPHYSIOLOGICAL PROPERTIES OF DRUG-INDUCED CARDIOMYOCYTES	27
13:45	ORIGAMI-TYPE FLEXIBLE THERMOELECTRIC GENERATOR FABRICATED BY SELF-FOLDING USING LINKAGE MECHANISM Yusuke Sato, Shingo Terashima, and Eiji Iwase Waseda University, JAPAN	31
14:00	LOW-COST, FLEXIBLE ANNULAR INTERDIGITAL CAPACITIVE SENSOR (FAICS) WITH CARBONBLACK-PDMS SENSITIVE LAYER FOR PROXIMITY AND PRESSURE SENSING Zhitong Zhang, Junshi Li, Bocheng Yu, Dong Huang, Qining Wang, and Zhihong Li Peking University, CHINA	35
14:15	FULLY RUBBERY EPICARDIAL BIOELECTRONIC PATCH Faheem Ershad ¹ , Kyoseung Sim ² , and Cunjiang Yu ¹ ¹ University of Houston, USA and ² Ulsan National Institute of Science and Technology (UNIST), KOREA	39
14:30	Transition	
	0 1 0 1	
	Opening Remarks	
14:45	MEMS 2022 Conference Chairs Zhihong Li, Peking University, CHINA Shuji Tanaka, Tohoku University, JAPAN	
14:45	MEMS 2022 Conference Chairs Zhihong Li, Peking University, CHINA	
14:45	MEMS 2022 Conference Chairs Zhihong Li, Peking University, CHINA Shuji Tanaka, Tohoku University, JAPAN	
	MEMS 2022 Conference Chairs Zhihong Li, Peking University, CHINA Shuji Tanaka, Tohoku University, JAPAN Plenary Presentation I SKIN-INSPIRED ORGANIC ELECTRONICS Zhenan Bao	_
15:15	MEMS 2022 Conference Chairs Zhihong Li, Peking University, CHINA Shuji Tanaka, Tohoku University, JAPAN Plenary Presentation I SKIN-INSPIRED ORGANIC ELECTRONICS Zhenan Bao Stanford University, USA	
15:15	MEMS 2022 Conference Chairs Zhihong Li, Peking University, CHINA Shuji Tanaka, Tohoku University, JAPAN Plenary Presentation I SKIN-INSPIRED ORGANIC ELECTRONICS Zhenan Bao Stanford University, USA Break	43

17:00	A MICRO-SCALE LOW-TEMPERATURE ATMOSPHERIC MICRO-PLASMA JET WITH HOLLOW-CONE ELECTRODES Chenxiang Zhang, Chuan Fang, Liwei Jiang, He-Ping Li, and Zheyao Wang Tsinghua University, CHINA	51
17:15	TINY-SIZED ULTRA-SENSITIVE THERMAL GAS FLOW SENSOR WITH N ⁺ SI/P ⁺ SI THERMOPILE SINGLE-SIDE MICROMACHINED IN A SINGLE NON-SOI SILICON WAFER Tao Huang ^{1,2} , Wei Zhou ¹ , Peng Zhang ^{1,2} , Jiachou Wang ^{1,2} , and Xinxin Li ^{1,2} ¹ Chinese Academy of Sciences (CAS), CHINA and ² University of Chinese Academy of Sciences, CHINA	55
17:30	MICRO CORIOLIS MASS FLOW SENSOR WITH PIEZOELECTRIC TRANSDUCERS FOR BOTH ACTUATION AND READOUT Yaxiang Zeng ¹ , Remco J. Wiegerink ¹ , and Joost C. Lötters ^{1,2} ¹ University of Twente, NETHERLANDS and ² Bronkhorst High-Tech BV, NETHERLANDS	59
17:45	PIEZOELECTRIC MEMS UNVOICED SPEECH-RECOGNITION SENSOR BASED ON ORAL AIRFLOW Qi Wang, Tao Ruan, Qingda Xu, Yuzhi Shi, Bin Yang, and Jingquan Liu Shanghai Jiao Tong University, CHINA	63

Virtual Poster Session I and Virtual Exhibit Inspection

22:00 – 23:30 Presentations are listed by topic category with their assigned number starting on page xiii.

23:30 Adjourn for the Day

Tuesday, 11 January

All times are Japanese Standard Time (JST).

Virtual Poster Session II and Virtual Exhibit Inspection

05:00 - 06:30 Presentations are listed by topic category with their assigned number starting on page xiii.

In-Person Poster Session II

09:15 – 10:45 Presentations are listed by topic category with their assigned number starting on page xiii.

10:15 Break

	Session IV - Tactile and Force Sensors	
10:45	TOWARDS ARTIFICIAL ROBOTIC SKIN: HIGHLY SENSITIVE FLEXIBLE TACTILE SENSING ARRAYS WITH 3D SENSING CAPABILITIES Johannes Weichart, Marcel Ott, Thomas Burger, and Christofer Hierold ETH Zürich, SWITZERLAND	67
11:00	ACTIVE-MATRIX TACTILE SENSOR ARRAY BASED ON MONOLITHIC INTEGRATION OF PVDF AND DUAL-GATE TRANSISTORS Tengteng Lei, Yushen Hu, and Man Wong Hong Kong University of Science and Technology, CHINA	 7 1
11:15	THREE-DIMENTIONAL GRAPHENE FIELD EFFECT TRANSISITORS AS SELF-POWERED VIBRATION SENSORS Yuning Li ¹ , Jingye Sun ¹ , Shasha Li ¹ , Fang Su ² , Weijie Yin ¹ , Xiuhan Li ¹ , Zewen Liu ³ , Tao Deng ¹ , and Yinghong Wen ¹ ¹ Beijing Jiaotong University, CHINA, ² Beijing Institute of Fashion and Technology, CHINA, and ³ Tsinghua University, CHINA	75
11:30	WASHABLE, INKJET-PRINTED FLEXIBLE TACTILE SENSOR ON FABRIC WITH TEMPERATURE TOLERANCE Kyubin Bae, Yunsung Kang, Eunhwan Jo, Sangjun Sim, Woongseek Yang, and Jongbaeg Kim Yonsei University, KOREA	79
11:45	TACTILE-OLFACTORY INTELLIGENT SENSING ARRAYS FOR OBJECTS RECOGNITION IN HAZARDOUS ENVIRONMENTS Mengwei Liu ^{1,2} , Yujia Zhang ^{1,2} , Jiachuang Wang ^{1,2} , Nan Qin ^{1,2} , and Tiger H. Tao ^{1,2,3,4,5} ¹ Chinese Academy of Sciences (CAS), CHINA, ² University of Chinese Academy of Sciences, CHINA, ³ ShanghaiTech University, CHINA, ⁴ Institute of Brain-Intelligence Technology, CHINA, and ⁵ Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, CHINA	83
12:00	Lunch	

Session V - Digital Microfluidics

AN ELECTROWETTING-BASED PRE-TREATMENT SYSTEM	
OF EXTRACELLULAR VESICLES FOR RNA ANALYSIS	. 87
Zhaoduo Tong ¹ , Chuanjie Shen ¹ , Yunxing Lu ¹ , Zhenhua Wu ¹ ,	
Hao Yin ¹ , Shihui Qiu ¹ , Haozhi Lei ² , and Hongju Mao ¹	
¹ Chinese Academy of Sciences (CAS), CHINA and	
	OF EXTRACELLULAR VESICLES FOR RNA ANALYSIS

²Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, CHINA

13:15	AN INTEGRATED, MULTIPLEX DIGITAL PCR-BASED MICROFLUIDIC SYSTEM FOR QUANTIFICATION OF TWO MICRORNA BIOMARKERS FOR DIAGNOSIS OF OVARIAN CANCER	91
	Chi-Chien Huang ¹ , Chia-Yu Sung ¹ , Yi-Sin Chen ¹ , Keng-Fu Hsu ² , and Gwo-Bin Lee ¹ National Tsing Hua University, TAIWAN and ² National Cheng Kung University, TAIWAN	
13:30	NANOWIRE-COATED EMITTER ELECTROSPRAY IONIZER COUPLED TO DIGITAL MICROFLUIDICS FOR LIQUID ANALYSIS Alex Kachkine and Luis F. Velásquez-García Massachusetts Institute of Technology, USA	95
13:45	COMBINED THEORY AND EXPERIMENTAL VERIFICATION OF PLASTRON STABILITY ON SUPERHYDROPHOBIC SURFACE Ning Yu, Zhaohui "Ray" Li, Alexander McClelland, and Chang-Jin "CJ" Kim University of California, Los Angeles, USA	99
14:00	Transition	
	Session VI - Implantable and Ingestible Devices	
14:15	RECORDING NEURONAL ACTIVITY ON CHIP WITH SEGMENTED 3D MICROELECTRODE ARRAYS Nele Revyn ¹ , Michel H.Y. Hu ² , Jean-Philippe M.S. Frimat ² , Bjorn De Wagenaar ¹ , Arn M.J.M van den Maagdenberg ² , Pasqualina M. Sarro ¹ , and Massimo Mastrangeli ¹ Delft University of Technology, NETHERLANDS and Leiden University Medical Center (LUMC), NETHERLANDS	102
14:30	LOW-VOLTAGE FLEXIBLE INTERDIGITAL ELECTRODE FOR PULSED FIELD ABLATION WITH EFFECT EVALUATION Mengfei Xu, Wen Hong, Mu Qin, Ziliang Song, Yuzhi Shi, Bin Yang, and Jingquan Liu Shanghai Jiao Tong University, CHINA	106
14:45	INGESTIBLE WIRELESS CAPSULE SENSOR MADE FROM EDIBLE MATERIALS FOR GUT BACTERIA MONITORING	110
15:00	STACKABLE WIRELESS CONTROLLER OF SINGLE-SIDED µLED ARRAYS FOR OPTOGENETICS IN FREELY BEHAVING ANIMALS	114
15:15	Break	
	Plenary Presentation II	
15:45	THE MICRO-OPTICS REVOLUTION IN AUTOMOTIVE LIGHTING Reinhard Voelkel SUSS MicroOptics SA, SWITZERLAND	
16:30	Transition	

	Session VII - Environmental Sensors	
16:45	KIRIGAMI-STRUCTURED AND SHAPE-ADAPTIVE EYE CAMERA USING CONFORMAL ADDITIVE STAMP PRINTING Zhoulyu Rao, Yuntao Lu, and Cunjiang Yu University of Houston, USA	N /A
17:00	TEMPERATURE-PROGRAMMED RESONANT MICROCANTILEVER FOR QUANTITATIVE EVALUATION OF NANOMATERIAL SENSING CHARACTERISTICSXinyu Li ^{1,2} , Tao Zhang ¹ , Fanglan Yao ^{1,2} , Ying Chen ^{1,2} , Pengcheng Xu ^{1,2} , and XinXin Li ^{1,2} ¹ Chinese Academy of Sciences (CAS), CHINA and ² University of Chinese Academy of Sciences, CHINA	122
17:15	A PIEZOELECTRIC BULK WAVE RESONANT HUMIDITY SENSOR FOR NONCONTACT HUMAN-MACHINE INTERACTION	120
17:30	POUND-DREVER-HALL LOCKING SYSTEM FOR PRECISE TEMPERATURE MEASUREMENT BASED ON SILICON RING RESONATORS Xiantao Zhu, Minmin You, Yuzhi Shi, Bin Yang, and Jingquan Liu Shanghai Jiao Tong University, CHINA	130
17:45	A SUB-nL DIFFERENTIAL SCANNING CALORIMETRY CHIP FOR LIQUID CRYSTAL PHASE TRANSITION CHARACTERIZATION Sheng Ni ¹ , Yang Bu ¹ , Hanliang Zhu ² , Valerii V. Vashchenko ¹ , Abhishek K. Srivastava ¹ , Pavel Neuzil ^{2,3} , and Levent Yobas ¹ ¹ Hong Kong University of Science and Technology, HONG KONG, ² Northwestern Polytechnical University, CHINA, and ³ Brno University of Technology, CZECH REPUBLIC	134
18:00	FABRICATION AND INTEGRATION OF SOC ENVIRONMENT SENSING HUB WITH GAS/PRESSURE/TEMPERATURE SENSORS Tung-Lin Chien, Ya-Chu Lee, Tien Chou, Yao-Yu Lin, Han-Yi Chen, and Weileun Fang National Tsing Hua University, TAIWAN	138

Virtual Poster Session III and Virtual Exhibit Inspection

22:00 – 23:30 Presentations are listed by topic category with their assigned number starting on page xiii.

23:30 Adjourn for the Day

Wednesday, 12 January

All times are Japanese Standard Time (JST).

Virtual Poster Session IV and Virtual Exhibit Inspection

05:00 - 06:30 Presentations are listed by topic category with their assigned number starting on page xiii.

In-Person Poster Session III

09:15 – 10:45 Presentations are listed by topic category with their assigned number starting on page xiii.

10:15 Break

	Session VIII - Inertial Sensors	
10:45	A FAST-STARTUP SELF-SUSTAINED THERMAL-PIEZORESISTIVE OSCILLAROR WITH >10 ⁶ EFFECTIVE QUALITY FACTOR IN THE AIR Hemin Zhang, Aojie Quan, Chenxi Wang, Linlin Wang, Chen Wang, and Michael Kraft KU Leuven, BELGIUM	142
11:00	A COMPACT STABILIZATION SCHEME FOR QUALITY FACTOR IN NONDEGENERATE MEMS GYROSCOPE Yang Zhao, Qin Shi, Guoming Xia, and Anping Qiu Nanjing University of Science and Technology, CHINA	146
11:15	A T-SHAPED MEMS DIFFERENTIAL RESONANT ACCELEROMETER WITH MODULE-BASE DEMONSTRATION OF >134 DB DYNAMIC RANGE AND <1 MDEG ABSOLUTE TILT ANGLE PRECISION	150
11:30	FUSED SILICA DUAL-SHELL GYROSCOPE WITH IN-PLANE ACTUATION BY OUT-OF-PLANE ELECTRODES REALIZED USING GLASSBLOWING AND THRU-GLASS-VIAS FABRICATION Danmeng Wang, Mohammad H. Asadian, Doreen Hii, and Andrei M. Shkel University of California, Irvine, USA	154
11:45	A MEMS BASED ELECTROCHEMICAL ANGULAR ACCELEROMETER WITH A HIGH-INTEGRATED SENSING UNIT Tian Liang ^{1,2} , Bowen Liu ^{1,2} , Wenjie Qi ^{1,2} , Mingwei Chen ^{1,2} , Anxiang Zhong ^{1,2} , Yumo Duan ^{1,2} , Jian Chen ¹ , Deyong Chen ¹ , and Junbo Wang ¹ Chinese Academy of Sciences (CAS), CHINA and ² University of Chinese Academy of Sciences, CHINA	158
12:00	Lunch	

Session IX - Cell and Molecule Analysis

13:00	DEVELOPMENT OF A MICROFLUIDIC PLATFORM CAPABLE OF MEASURING	
	INTRINSIC ELECTRICAL PROPERTIES FROM 1000 SINGLE CELLS	162
	Yi Zhang ^{1,2,3} , Minruihong Wang ¹ , Yu Zheng ⁴ , Deyong Chen ^{1,2} ,	
	Wei Wang ³ , Junbo Wang ^{1,2} , and Jian Chen ^{1,2}	
	¹ Chinese Academy of Sciences (CAS), CHINA, ² University of Chinese Academy of Sciences, CHINA,	
	³ Peking University, CHINA, and ⁴ Taishan College, CHINA	

13:15	EXCHANGE FOR SENSOR CELL PRODUCTION	166
	oshihisa Osaki ² , Norihisa Miki ^{1,2} , and Shoji Takeuchi ^{2,3} ¹ Keio University, JAPAN, ² Kanagawa Institute of Industrial Science and Technology, JAPAN, and ³ University of Tokyo, JAPAN	
13:30	DETECTION OF SINGLE MOLECULAR DNA CHARGE THROUGH TFT-INTEGRATED NANOPORE BIOSENSOR	168
	Xin Zhu, Xiaojie Li, Chaoming Gu, Zhi Ye, Zhen Cao, and Yang Liu Zhejiang University, CHINA	100
13:45	FIXATION-FREE EVALUATION OF CARDIAC CONTRACTILE FORCE BY HUMAN IPSC-DERIVED CARDIAC CORE-SHELL MICROFIBER	172
	Akari Masuda ¹ , Keisuke Fukada ¹ , Shun Itai ¹ , Yuta Kurashina ² , Shuichi Akizuki ³ , Shugo Tohyama ¹ , Jun Fujita ¹ , and Hiroaki Onoe ¹ ¹ Keio University, JAPAN, ² Tokyo Institute of Technology, JAPAN, and ³ Chukyo University, JAPAN	
14:00	Transition	
	Session X - Advanced Fabrication and Characterization	
14:15	A DEFECT-BASED MEMS PHONONIC CRYSTAL SLAB WAVEGUIDE	176
14:15	Valentina Zega ¹ , Chiara Gazzola ¹ , Andrea Buffoli ¹ , Manfredi Conti ¹ , Luca G. Falorni ² , Giacomo Langfelder ¹ , and Attilio Frangi ¹	1/0
	Politecnico di Milano, ITALY and ² STMicroelectronics, ITALY	
14:30	DIGITAL MANUFACTURING OF RESONANCE MEMS FROM A SINGLE-LAYER FUSED SILICA MATERIAL	180
	Daryosh Vatanparvar and Andrei M. Shkel University of California, Irvine, USA	
14:45	LIQUID CRYSTAL DROPLETS AS A VISUALIZATION SENSOR	104
	OF HEAT FLUX FROM MICROFABRICATED METAL STRUCTURES	184
15:00	STRUCTURE AND PHASE EVOLUTION CHARACTERIZATION OF ADVANCED MATERIA	LS
	BY USING TEMPERATURE-PROGRAMMABLE RESONANT MICROCANTILEVER IN COMBINATION WITH RAMAN SPECTROSCOPY (SIMULTANEOUS TG-RAMAN)	188
	IN COMBINATION WITH RAMAN SPECTROSCOPY (SIMULTANEOUS TG-RAMAN)	
15:15	Break	
	Plenary Presentation III	
15:45	CANTILEVER-BASED SCIENTIFIC INSTRUMENTATION Xinxin Li	
	Chinese Academy of Sciences (CAS), CHINA	
16:30	Transition	

	Session XI - Resonators and RF MEMS	
16:45	GAN-ON-SIC SURFACE ACOUSTIC WAVE DEVICES UP TO 14.3 GHZ Imtiaz Ahmed ¹ , Udit Rawat ¹ , Jr-Tai Chen ² , and Dana Weinstein ¹ Purdue University, USA and ² SweGaN AB, SWEDEN	. 192
17:00	1:6 INTERNAL RESONANCE IN CMOS-MEMS MULTIPLE-STEPPED CC-BEAM RESONATORS Ting-Yi Chen, Chun-Pu Tsai, and Wei-Chang Li National Taiwan University, TAIWAN	. 196
17:15	WAFER-LEVEL FABRICATED DOUBLE-HELIX RF-MEMS TRANSFORMERS WITH COUPLING-FACTOR OF 0.93@100MHZ FOR HIGH-EFFICIENCY ISOLATED POWER/SIGNAL TRANSMISSION Changnan Chen ^{1,2} , Nianying Wang ^{1,2,3} , Jiebin Gu ¹ , and Xinxin Li ^{1,2,3} ¹ Chinese Academy of Sciences (CAS), CHINA, ² University of Chinese Academy of Sciences, CHINA, and ³ ShanghaiTech University, CHINA	. 200
17:30	A MICROMECHANICAL FREQUENCY CONTROLLED PULSE DENSITY MODULATOR	. 204
17:45	NANOELECTROMECHANICAL MEMORIES BASED ON NONLINEAR 2D MoS ₂ RESONATORS Pengcheng Zhang, Yueyang Jia, Zuheng Liu, Yijian Zhang, Maosong Xie, Jianyong Wei, and Rui Yang Shanghai Jiao Tong University, CHINA	. 208
18:00	PHASE NOISE OPTIMIZATION OF PIEZOELECTRIC BULK MODE MEMS OSCILLATORS BASED ON PHASE FEEDBACK IN SECONDARY LOOP Chin-Yu Chang ¹ , Gayathri Pillai ² , and Sheng-Shian Li ¹ National Tsing Hua University, TAIWAN and ² Indian Institute of Science, INDIA	. 212

Virtual Poster Session V and Virtual Exhibit Inspection

22:00 – 23:30 Presentations are listed by topic category with their assigned number starting on page xiii.

23:30 Adjourn for the Day

Thursday, 13 January

All times are Japanese Standard Time (JST).

Virtual Poster Session VI and Virtual Exhibit Inspection

05:00 – 06:30 Presentations are listed by topic category with their assigned number starting on page xiii.

	Session XII - Actuators and Switches	
09:15	COMPACT INTEGRATED SILICON PHOTONIC MEMS POWER COUPLER FOR PROGRAMMABLE PHOTONICS Alain Y. Takabayashi ¹ , Duarte Silva ¹ , Hamed Sattari ¹ , Pierre Edinger ² , Peter Verheyen ³ , Kristinn B. Gylfason ² , Wim Bogaerts ⁴ , and Niels Quack ^{1,5} ¹ École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND, ² KTH Royal Institute of Technology, SWEDEN, ³ Interuniversity Microelectronics Centre (IMEC), BELGIUM, ⁴ Ghent University, BELGIUM, and ⁵ University of Sydney, AUSTRALIA	,
09:30	PHOTOCONDUCTIVE SWITCHING OF A HIGH-VOLTAGE ACTUATOR ARRAY	. 220
09:45	A MEMS CONTACTLESS ROTATING TERAHERTZ WAVEGUIDE SWITCH	. 223
10:00	IN-SITU INTEGRATED MICROROBOTS ON A CHIP POWERED BY BIOMOLECULAR ARTIFICIAL MUSCLE Yingzhe Wang ¹ , Yuichi Hiratsuka ² , Takahiro Nitta ³ , and Keisuke Morishima ¹ Osaka University, JAPAN, ² Japan Advanced Institute of Science and Technology (JAIST), JAPAN and Gifu University, JAPAN	. 227
10:15	SELF-SUSTAINING PNEUMATIC MICRO ACTUATOR FOR LARGE DEFORMATION AND 3D MORPHOLOGY Fade Hu, Xiayu Wang, and Chuan Luo Tsinghua University, CHINA	. 231
10:30	MICRO MAGNETIC PATTERNING ON EXTREMELY TOUGH MAGNETIC GEL ACTUATOR Koichi Ninomiya, Suparat Gaysornkaew, and Fujio Tsumori Kyushu University, JAPAN	. 235
10:45	Break	
	Session XIII - Piezoelectric Devices	
11:15	EFFICIENT PHASE AND QUADRATURE CONTROL OF A PZT RESONANT MEMS MICROSCANNER WITH PIEZORESISTIVE POSITION SENSOR Paolo Frigerio ¹ , Lorenzo Giancristofaro ¹ , Luca Molinari ² , Raffaele Furceri ² , Marco Zamprogno ² , Roberto Carminati ² , Nicolò Boni ² , and Giacomo Langfelder ¹ Politecnico di Milano, ITALY and ² STMicroelectronics, ITALY	. 239

11:30	WITH INTEGRATED BURIED PIEZORESISTORS Andrea Vergara ¹ , Takashiro Tsukamoto ¹ , Weileun Fang ² , and Shuji Tanaka ¹ Tohoku University, JAPAN and ² National Tsing Hua University, TAIWAN	. 243
11:45	MID-AIR HAPTIC FEEDBACK ENABLED BY ALUMINUM NITRIDE PMUTS	. 247
12:00	MATCHING NETWORK-BOOSTED 36% SCALN PMUT LINEAR ARRAY	. 251
12:15	PZT MEMS SPEAKER INTEGRATED WITH SILICON-PARYLENE COMPOSITE CORRUGATED DIAPHRAGM Yuki Hirano ¹ , Yukio Suzuki ¹ , Norihito Fujita ² , Chung-Min Li ³ , Hirofumi Chiba ² , and Shuji Tanaka ¹ Tohoku University, JAPAN, ² Stanley Electric Co., Ltd., JAPAN, and ³ AAC Technologies Pte. Ltd., SINGAPORE	. 255
12:30	Lunch	
	Session XIV - Microfluidic Devices	
13:30	SELF-ALIGNED FABRICATION AND CONTACT LINE PINNING CHARACTERIZATION OF PEDESTAL NOZZLES Bjorn T.H. Borgelink, Erwin J.W. Berenschot, Remco G.P. Sanders, Stefan Schlautmann, Han Gardeniers, and Niels R. Tas University of Twente, NETHERLANDS	. 259
13:45	FIELD EFFECT TRANSISTOR-LIKE CONTROL OF CAPILLARIC FLOW USING OFF-VALVES Robert Claude Meffan ^{1,2} , Daniel Mak ¹ , Julian Menges ¹ , Fabian Dolamore ¹ , Conan Fee ¹ , Renwick C.J. Dobson ¹ , and Volker Nock ¹ ¹ University of Canterbury, NEW ZEALAND and ² Kyoto University, JAPAN	. 263
14:00	GLASS-CAPILLARY-EMBEDDED 3D COAXIAL MICROFLUIDIC DEVICE WITH PNEUMATIC MICROVALVE CONTROL FOR PRODUCING PATTERNED FUNCTIONAL MATERIALS Naoki Takakura ¹ , Yuta Kurashina ² , and Hiroaki One ¹ ¹ Keio University, JAPAN and ² Tokyo Institute of Technology, JAPAN	. 267
14:15	A PAPER-BASED MICROFLUIDIC ANALYTICAL DEVICE WITH A HIGHLY INTEGRATED ON-CHIP VALVE FOR AUTONOMOUS ELISA Tianyu Cai ¹ , Sixuan Duan ^{1,4} , Hao Fu ² , Jia Zhu ³ , Eng Gee Lim ^{1,4} , Kaizhu Huang ^{1,4} , Kai Hoettges ⁴ , Xinyu Liu ⁵ , and Pengfei Song ^{1,4} ¹ Xi'an Jiaotong - Liverpool University, Suzhou, CHINA, ² Mindray Medical International Co., Ltd, CHINA, ³ Suzhou City University, CHINA, ⁴ University of Liverpool, UK, and ⁵ University of Toronto, CANADA	. 271
14:30	Transition	
	Session XV - Tissue Engineering	
14:45	IN VITRO ARTERY MODEL WITH CIRCUMFERENTIALLY ALIGNED & CONTRACTIBLE SMOOTH MUSCLE BY UNFIXED MOLDING & SCREWING FABRICATION Shun Itai and Hiroaki Onoe Keio University, JAPAN	. 275

15:00	A MICRODEVICE FOR SIMULTANEOUS MEASUREMENT OF CARDIAC CONTRACTION AND ELECTROPHYSIOLOGY Wenkun Dou ¹ , Manpreet Malhi ² , Jason Maynes ² , and Yu Sun ¹ **IUniversity of Toronto, CANADA and **Hospital for Sick Children, CANADA**	279
15:15	PROTEIN EXPRESSION MICRO-SCALE MAPPING ANALYSIS OF ENDOTHELIAL TISSUE IN IN VITRO BRANCHED VASCULAR MODEL UNDER MECHANICAL STIMULI Jumpei Muramatsu ¹ , Azusa Shimizu ¹ , Michinao Hashimoto ² , Shigenori Miura ³ , and Hiroaki Onoe ¹ ¹ Keio University, JAPAN, ² Singapore University of Technology and Design, SINGAPORE, and ³ University of Tokyo, JAPAN	283
15:30	HOLLOW FIBER BIOREACTOR WITH MICRO ANCHOR ARRAYS FOR THE BIOFABRICATION OF SKELETAL MUSCLE TISSUES Minghao Nie, Ai Shima, and Shoji Takeuchi University of Tokyo, JAPAN	287
15:45	Break	
	Plenary Presentation IV	
16:15	CMOS BASED ION IMAGING SYSTEM	

IEEE MEMS 2023 Announcement

17:00 MEMS 2022 Conference Chairs
Núria Barniol, *Universidad Autonoma Barcelona, SPAIN*Franz Lärmer, *Bosch, GmbH, GERMANY*

Toyohashi University of Technology, JAPAN

Awards Ceremony and Closing Remarks

17:15 Outstanding Paper Award

Kazuaki Sawada

17:30 Conference Adjourns

POSTER PRESENTATIONS

All times are Japanese Standard Time (JST).

Poster Numbers that begin with 1	Virtual Poster Session I	Monday, 10 January	22:00 - 23:30
Poster Numbers that begin with 2	Virtual Poster Session II	Tuesday, 11 January	05:00 - 06:30
Poster Numbers that begin with 3	Virtual Poster Session III	Tuesday, 11 January	22:00 - 23:30
Poster Numbers that begin with 4	Virtual Poster Session IV	Wednesday, 12 January	05:00 - 06:30
Poster Numbers that begin with 5	Virtual Poster Session V	Wednesday, 12 January	22:00 - 23:30
Poster Numbers that begin with 6	Virtual Poster Session VI	Thursday, 13 January	05:00 - 06:30

Classification Chart

(last character of poster number)

a D	ia and	Medical	INTENIC
a - B	io anu	vieuica	

- b Emerging Technologies and New Opportunities for MEMS/NEMS
- c Industry MEMS and Advancing MEMS for Products and Sustainability
- d Materials, Fabrication and Packaging for Generic MEMS and NEMS
- **e MEMS Actuators and PowerMEMS**
- f MEMS Physical Sensors
- g Micro- and Nanofluidics
- h Optical, RF and Electromagnetics for MEMS

	a - Bio and Medical MEMS	
	Biosensors and Bioreactors	
201-а	WRISTWATCH BIOSENSOR FOR SWEAT LACTIC ACID MONITORING	289
401-a	A MICROFLUIDIC BIOSENSOR FOR RAPID DETECTION OF ENDEMIC CHRONIC WASTING DISEASE Sura A. Muhsin ¹ , Estela Kobashigawa ¹ , Muthana Al-amidie ¹ , Sherri Russell ² , Michael Zhang ¹ , Shuping Zhang ¹ , and Mahmoud Almasri ¹ ¹ University of Missouri, USA and ² Missouri Department of Conservation, USA	293
402-a	NANOPOROUS CARBON-BASED WEARABLE HYBRID BIOSENSING PATCH FOR REAL-TIME AND IN VITRO HEALTHCARE MONITORING Md Abu Zahed, Hyosang Yoon, Md Sharifuzzaman, Sang Hyuk Yoon, Dong Kyun Kim, Young Do Shin, Md Asaduzzaman, and Jae Yeong Park Kwangwoon University, KOREA	297
501-a	A WIDE DYNAMIC DETECTION RANGE GLUCOSE SENSOR BY SYNERGETIC TWO P+N ORGANIC FIELD-EFFECT TRANSISTORS Xingguo Zhang, Zhihua Pu, Xiao Su, Chengcheng Li, Hao Zheng, and Dachao Li Tianjin University, CHINA	301
601-a	A MICROCHIP FOR STUDYING THE EFFECTS OF DOPAMINE AND ITS PRECURSOR ON NEUROSPHEROIDS Subin Mao, Catherine Fonder, Fazlay Rubby, Renyuan Yang, Gregory Phillips, Donald Sakaguchi, and Long Que Iowa State University, USA	305

	Devices & Systems for Centurar and Molecular Studies	
101-a	IMAGE-BASED CELL SORTING SYSTEM USING LIGHT-ACTUATED MICROVALVE ARRAY Aisuke Mifune ¹ , Yuriko Ezaki ¹ , Daisuke Saito ¹ , Koichiro Uto ² , and Masashi Ikeuchi ³ ¹ University of Tokyo, JAPAN, ² National Institute for Materials Science, JAPAN, and ³ Tokyo Medical and Dental University, JAPAN	. 309
102-a	AN OPTICAL MICRONEEDLE FOR LOCALIZED LIGHT THERAPY ON MELANOMA CELLS Xiaobin Wu, Jongho Park, and Beomjoon Kim University of Tokyo, JAPAN	. 313
202-а	SINGLE CELL CLASSIFICATION USING STATISTICAL LEARNING ON MECHANICAL PROPERTIES MEASURED BY MEMS TWEEZERS Bahram Ahmadian ¹ , Deborah Mbujamba ² , Jean-Claude Gerbedoen ^{1,2} , Momoko Kumemura ³ , Hiroyuki Fujita ^{4,5} , Dominique Collard ^{1,2} , Sophie Dabo-Niang ¹ , Chann Lagadec ¹ , and Mehmet C. Tarhan ^{1,2} ¹ Université de Lille, FRANCE, 2University of Tokyo, FRANCE, ³ Kyushu Institute of Technology, JAPAN, ⁴ Tokyo City University, JAPAN, and ⁵ Canon Medical Systems Corporation, JAPAN	. 317
502-a	TUBE-SHAPED IN-VITRO INTESTINAL GUT MODEL WITH 3D ISOTROPIC MEDIUM SUPPLY FOR BACTERIAL SYMBIOSIS	. 321
602-a	COMPACT MICRO-STEREOLITHOGRAPHIC (µSLA) PRINTED, 3D MICROELECTRODE ARRAYS (3D MEAS) WITH MONOLITHICALLY DEFINED POSITIVE AND NEGATIVE RELIEF FEATURES FOR IN VITRO CARDIAC BEAT SENSING	. 325
603-a	FABRICATION AND CHARACTERIZATION OF A RIGID MICROFLUIDIC MECHANOPORATION DEVICES WITH HIGH PRESSURE TOLERANCE AND HIGH CELL TRANSFECTION	. 329
	a - Bio and Medical MEMS	
	Flexible and Wearable Devices and Systems	
103-а	A DURABLE FLEXIBLE PRESSURE SENSOR WITH HIGH SENSITIVITY AND WIDE PRESSURE RANGE FOR HEALTH MONITORING Xin Zhang, Lijun Lu, Pinbao Zhang, Jingquan Liu, and Bin Yang Shanghai Jiao Tong University, CHINA	. 333
104-а	ELECTRIC FIELD-ENHANCED ELECTROHYDRODYNAMIC PROCESS FOR FABRICATION OF HIGHLY SENSITIVE PIEZOELECTRIC SENSOR Trung-Hieu Vu ¹ , Hang Thu Nguyen ² , Jarred W. Fastier-Wooller ¹ , Dang D.H Tran ³ , Tuan-Hung Nguyen ¹ , Thanh Nguyen ⁴ , Tuan-Khoa Nguyen ¹ , Canh-Dung Tran ⁴ , Naghmeh Abbasi ⁵ , Tung T. Bui ² , Dzung V. Dao ¹ , and Van Thanh Dau ¹ ¹ Griffith University, Queensland, AUSTRALIA, ² Vietnam National University, VIETNAM, ³ Explosion Research Institute Inc., JAPAN, ⁴ University of Southern Queensland, AUSTRALIA, and ⁵ Griffith University, Gold Coast, AUSTRALIA	. 337
105-а	FABRIC-LIKE PVAC-GRAPHENE NANOFIBER CAPACITIVE PRESSURE SENSORS FOR NEXT-GENERATION WEARABLES Debarun Sengupta ¹ , Liqiang Lu ¹ , Yutao Pei ¹ , and Ajay Giri Prakash Kottapalli ^{1,2} ¹ University of Groningen, NETHERLANDS and ² MIT Sea Grand College Program, USA	. 341

a - Bio and Medical MEMS

203-a	MULTI-CHANNEL FLEXIBLE MICRONEEDLE ELECTRODE ARRAY(MNEA) FOR HIGH-DENSITY SURFACE EMG RECORDING Zhongyan Wang, Junshi Li, Bocheng Yu, Dong Huang, and Zhihong Li Peking University, CHINA	345
301-a	SMART TAPE FOR MONITORING HUMAN JOINT MOTION AND SWEAT WITH UNIQUE STIFFNESS DESIGN OF PIEZOELECTRIC SENSING MECHANISIM IN STRETCHING AND BENDING MOTION	349
403-a	AEROSOL-JET-PRINTED STRETCHABLE ELECTRONIC DECAL TECHNOLOGY	353
503-a	AN EMBEDDED HD-SEMG SENSOR MODIFIED WITH A SELF-ADHESIVE GEL WITH ULTRA-LOW CONTACT RESISTANCE, BALANCED FLEXIBILITY AND REPEATABILITY Nan Zhao, Gencai Shen, Chunpeng Jiang, Zhuangzhuang Wang, Ruijia Wang, Xiaolin Wang, Bin Yang, Zude Lin, and Jingquan Liu Shanghai Jiao Tong University, CHINA	357
604-a	WIRELESSLY POWERED MICRO SOFT BELLOWS ACTUATOR WITH 3D HELIX COILS	361
	a - Bio and Medical MEMS	
	Manufacturing for Bio- & Medical MEMS & Microfluidics	
106-a		365
106-a 107-a	Manufacturing for Bio- & Medical MEMS & Microfluidics DIGITAL MICROFLUIDIC CHIP BASED ON DIRECT INK WRITING FOR NUCLEIC ACID MULTIPLEX PCR DETECTION Chuanjie Shen ^{1,2} , Hao Yin ^{1,2} , Zhaoduo Tong ^{1,2} , Shihui Qiu ^{1,2} , Yunxing Lu ^{1,2} , Zhenhua Wu ¹ , and Hongju Mao ^{1,2}	
	Manufacturing for Bio- & Medical MEMS & Microfluidics DIGITAL MICROFLUIDIC CHIP BASED ON DIRECT INK WRITING FOR NUCLEIC ACID MULTIPLEX PCR DETECTION Chuanjie Shen ^{1,2} , Hao Yin ^{1,2} , Zhaoduo Tong ^{1,2} , Shihui Qiu ^{1,2} , Yunxing Lu ^{1,2} , Zhenhua Wu ¹ , and Hongju Mao ^{1,2} Chinese Academy of Sciences (CAS), CHINA and ² University of Chinese Academy of Sciences, CHINA MONITORING NEPHROTOXICITY ON A PROXIMAL TUBULE MYCROPHYSIOLOGICAL SYSTEM BY TRANS-EPITHELIAL ELECTRICAL RESISTANCE MEASUREMENTS Yuji Takata, Ryohei Ueno, Ramin Banan Sadeghian, Kazuya Fujimoto, and Ryuji Yokokawa	369
107-a	Manufacturing for Bio- & Medical MEMS & Microfluidics DIGITAL MICROFLUIDIC CHIP BASED ON DIRECT INK WRITING FOR NUCLEIC ACID MULTIPLEX PCR DETECTION Chuanjie Shen ^{1,2} , Hao Yin ^{1,2} , Zhaoduo Tong ^{1,2} , Shihui Qiu ^{1,2} , Yunxing Lu ^{1,2} , Zhenhua Wu ¹ , and Hongju Mao ^{1,2} ¹ Chinese Academy of Sciences (CAS), CHINA and ² University of Chinese Academy of Sciences, CHINA MONITORING NEPHROTOXICITY ON A PROXIMAL TUBULE MYCROPHYSIOLOGICAL SYSTEM BY TRANS-EPITHELIAL ELECTRICAL RESISTANCE MEASUREMENTS Yuji Takata, Ryohei Ueno, Ramin Banan Sadeghian, Kazuya Fujimoto, and Ryuji Yokokawa Kyoto University, JAPAN MICROREACTOR ARRAY BASED ON THREE-PHASE CONTACT LINE CONTROLLING AND SINTERING FOR DE NOVO OLIGONUCLEOTIDE SYNTHESIS Xiao Su, Yi Zhang, Haixia Yu, Xiaoping Li, and Dachao Li	369 373

	Materials for Bio- and Medical MEMS	
108-a	AGNW-EMBEDDED AND NANO-PATTERNED PDMS THIN FILM FOR IMPROVED ADHESION AND CONNECTION OF CARDIOMYOCYTES	. 384
109-a	NEAR INFRARED-TRIGGERED ON-DEMAND ADENO-ASSOCIATED VIRUS RELEASE FROM HYDROGEL MICROBEADS FOR GENE THERAPY Shuhei Takatsuka ¹ , Takeshi Kubota ¹ , Yuta Kurashina ² , and Hiroaki Onoe ¹ Keio University, JAPAN and ² Tokyo Institute of Technology, JAPAN	. 388
303-а	FAST AND COST-EFFECTIVE ISOLATION OF CIRCULATING EXOSOMES USING POROUS PDMS-BASED MICROSYSTEM(POROUS EXOCHIP) Yoon-Tae Kang, Joseph Marvar, Nna-Emeka Onukwugha, Kruthi Srinivasa Raju, Zeqi Niu, Brittany Rupp, Shawn Fortna, and Sunitha Nagrath University of Michigan, USA	. 392
	a - Bio and Medical MEMS	
	Medical Microsystems	
110-a	A FULLY-IMPLANTABLE MEMS-BASED AUTONOMOUS COCHLEAR IMPLANT	. 396
111-a	ASSEMBLY AND PARALLEL IMPLANTATION OF A PENETRATING FLEXIBLE PROBE WITH THOUSANDS OF MICROELECTRODES	. 400
112-a	SUBSTRATE-FREE DISSOLVABLE MICRONEEDLES WITH BARBED STRUCTURE PREPARED BY MODIFIED DUAL-MOULDING PROCESSES	. 404
207-а	A PVDF-TRFE INTRACOCHLEAR HYDROPHONE AND AMPLIFIER FOR TOTALLY IMPLANTABLE COCHLEAR IMPLANTS John Z. Zhang¹, Benjamin G. Cary¹, Aaron Yeiser¹, Christopher I. McHugh², Ioannis Kymisses³, Elizabeth S. Olson³, Hideko Heidi Nakajima², and Jeffrey H. Lang² ¹ Massachusetts Institute of Technology, USA, ² Harvard Medical School and Massachusetts Eye and Ear, USA, and ³ Columbia University, USA	. 408
404-a	PHOTOACOUSTIC AND ULTRASOUND DUAL-MODALITY ENDOSCOPIC IMAGING BASED ON ALN PMUT ARRAY Junxiang Cai ^{1,2,3} , Yiyun Wang ^{1,2,3} , Liang Lou ⁴ , Songsong Zhang ⁴ , Yuandong (Alex) Gu ⁴ , Fei Gao ^{1,2,3} , and Tao Wu ^{1,2,3} ¹ ShanghaiTech University, CHINA, ² Chinese Academy of Sciences (CAS), CHINA, ³ University of Chinese Academy of Sciences, CHINA, and ⁴ Shanghai Industrial μTechnology Research Institute, CHINA	. 412
405-a	SUBCUTANEOUS AND CONTINUOUS BLOOD PRESSURE MONITORING BY PMUTS IN AN ANBULATORY SHEEP Yande Peng ¹ , Sedat Pala ¹ , Zhichun Shao ¹ , Hong Ding ² , Jin Xie ³ , and Liwei Lin ¹ ¹ University of California, Berkeley, USA, ² University of California, San Diego, USA, and ³ Zhejiang University, CHINA	. 416

a - Bio and Medical MEMS

606-a	A TOP-DOWN FABRICATION APPROACH FOR DELIVERING IMPLANTABLE AND ULTRATHIN FLEXIBLE BRAIN PROBES	420
	a - Bio and Medical MEMS MEMS & BioMEMS for Healthcare and Public Health	
304-a	MESH-BASED MICROFLUIDIC PLATFORM FOR ORGAN-ON-A-CHIP Jungseub Lee, Sangmin Jung, and Noo Li Jeon Seoul National University, KOREA	424
	a - Bio and Medical MEMS	
	Tissue Engineering	
113-a	ON-CHIP COMPARTMENTALIZED VASCULAR BED PRESERVES KIDNEY ORGANOID DIFFERENTIATION Yoshikazu Kameda ¹ , Kensuke Yabuuchi ^{2,3} , Junichi Taniguchi ² , Toshikazu Araoka ¹ , Minoru Takasato ^{1,2,3} , Kazuya Fujimoto ¹ , and Ryuji Yokokawa ¹ ¹ Kyoto University, JAPAN, ² Riken, JAPAN, and ³ Osaka University, JAPAN	428
505-a	IN VITRO SKELETAL MUSCLE TISSUE WITH EDIBLE HYDROGEL TOWARD FABRICATION OF CULTURED MEAT IN MACROSCOPIC SIZE	432
	a - Bio and Medical MEMS	
	Other Bio and Medical MEMS	
114-a	POST-OPERATIVE ASSESSMENT OF TONGUE RECONSTRUCTION USING ULTRA-CONFORMAL, HIGH DENSITY TONGUE ELECTRODES Jizhi Liang ^{1,2} , Guo Bai ³ , Zhaohan Chen ⁴ , Feihong Xu ^{1,2} , Ke Chen ^{1,2} , Yi Dou ¹ , Duohong Zou ³ , Meng Li ^{1,2} , Zhitao Zhou ¹ , and Tiger H. Tao ^{1,2} ¹ Chinese Academy of Sciences (CAS), CHINA, ² University of Chinese Academy of Sciences, CHINA, ³ Shanghai JiaoTong University School of Medicine, CHINA, and ⁴ Shanghai Normal University, CHINA	435
506-a	HEXAGONAL MICROSTRUCTURE BIOINSPIRED BY THE TOE PAD OF A TREE FROG FOR INCREASING ADHESIVE FORCE IN SHEAR DIRECTION Toshihiro Shiratori, Masato Suzuki, Tomokazu Takahashi, and Seiji Aoyagi Kansai University, JAPAN	438
607-a	WITHDRAWN	N/A

	Machine Learning (ML) & Artificial Intelligence (AI) Enhanced MEMS/NEMS Design, Manufacturing, and Applications	
115-b	DEVELOPMENT OF ROLLING BEARING HEALTH DIAGNOSIS AND PREDICTION SYSTEM USING MEMS ACCELEROMETER VIBRATION SENSING MODULE Jyoti Satija, Po-Wen Huang, Somnath Singh, Tung Shen, Hung-Yu Chen, and Sheng-Shian Li National Tsing Hua University, TAIWAN	440
406-b	CUSTOMIZING MEMS DESIGNS VIA CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS Fanping Sui, Ruiqi Guo, Wei Yue, Kamyar Behrouzi, and Liwei Lin University of California, Berkeley, USA	450
407-b	DESIGNING WEAKLY COUPLED MEMS RESONATORS WITH MACHINE LEARNING-BASED METHOD Fanping Sui, Wei Yue, Ruiqi Guo, Kamyar Behrouzi, and Liwei Lin University of California, Berkeley, USA	454
507-ь	DATA DRIVEN FREEFORM MEMS ENERGY HARVESTER DESIGN ENABLED BY MACHINE LEARNING Kunying Li ^{1,2} , Ruiqi Guo ¹ , Fanping Sui ¹ , and Liwei Lin ¹ ¹ University of California, Berkeley, USA and ² Tsinghua University, CHINA	458
508-b	DEEP LEARNING FOR PREDICTING CD-SEMS OF NEMS DEVICES Benyamin Davaji ¹ , Peter A. Cook ¹ , Bahar Kor ¹ , Ziwang Luo ¹ , Jiaxian Chen ¹ , Jeremy Clark ¹ , Garry Bordonaro ¹ , Vincent Genova ¹ , Marco Heuser ² , Steve Ayres ² , Christopher K. Ober ¹ , Peter C. Doerschuk ¹ , and Amit Lal ¹ Cornell University, USA and ² Hitachi High Technologies America, Inc., USA	462
	b - Emerging Technologies and New Opportunities for MEMS/NEMS	
	MEMS/NEMS for Advancing Scientific Instrumentation and Metrology	
408-b	A MEMS MICROVALVE ARRAY FOR GAS FLOW CONTROL M. Bulut Coskun ¹ , Cecile Jung-Kubiak ¹ , Sofia Rahiminejad ¹ , Risaku Toda ¹ , Abhijit Shevade ¹ , Matthew Dickie ¹ , John Gill ¹ , and Mina Rais-Zadeh ^{1,2} ¹ Jet Propulsion Laboratory, California Institute of Technology, USA and ² University of Michigan, USA	460
608-b	A 3-DOF MEMS MOTION STAGE FOR SCANNING TUNNELING MICROSCOPY	470
116-b	PYROELECTRICALLY GENERATED HIGH VOLTAGE TO DIGITALLY CODE INVISIBLE ELECTROSTATIC INFORMATION ON FLEXIBLE POLYMER FOR APPLICATION IN SECURITY AND ANTI-COUNTERFEIT	473
609-b	HIGH DRIVING FREQUENCY (>54 KHZ) AND WIDE SCANNING ANGLE (>100 DEGREES) MEMS MIRROR APPLYING SECONDARY RESONANCE FOR 2K RESOLUTION AR/MR GLASSES	47

b - Emerging Technologies and New Opportunities for MEMS/NEMS

Panasonic Corporation, JAPAN

	New Computing Devices and Systems with MEMS/NEMS	
117-b	A MICRO-RESONATOR-BASED PROGRAMMABLE HYSTERESIS COMPARATORXuecui Zou, Sally Ahmed, and Hossein Fariborzi King Abdullah University of Science and Technology, SAUDI ARABIA	483
209-ь	MEMS RESERVOIR COMPUTING USING FREQUENCY MODULATED ACCELEROMETER Takahirio Mizumoto, Yoshikazu Hirai, Amit Banerjee, and Toshiyuki Tsuchiya Kyoto University, JAPAN	48′
	b - Emerging Technologies and New Opportunities for MEMS/NEMS	
	Nonlinear Dynamics in MEMS/NEMS	
305-b	FAST AND ACCURATE PREDICTIONS OF MEMS MICROMIRRORS NONLINEAR DYNAMIC RESPONSE USING DIRECT COMPUTATION OF INVARIANT MANIFOLDS Andrea Opreni ¹ , Alessandra Vizzaccaro ² , Nicolò Boni ³ , Roberto Carminati ³ , Gianluca Mendicino ³ , Cyril Touzé ⁴ , and Attilio Frangi ¹ Politecnico di Milano, ITALY, ² University of Bristol, UK, ³ STMicroelectronics, ITALY, and ⁴ Institut Polytechnique de Paris, FRANCE	49 1
306-ь	INTERMODAL COUPLING INDUCED NONLINEAR DAMPING IN MOLYBDENUM DISULFIDE (MoS ₂) RESONATOR Nishta Arora, Parmeshwar Prasad, and Akshay Naik Indian Institute of Science, Bengaluru, INDIA	495
307-ь	REDUCED ORDER MODELLING IN A MEMS ARCH RESONATOR EXHIBITING 1:2 INTERNAL RESONANCE Valentina Zega ¹ , Giorgio Gobat ¹ , Patrick Fedeli ² , Paola Carulli ² , and Attilio A. Frangi ¹ Politecnico di Milano, ITALY and ² STMicroelectronics, ITALY	499
509-b	PHONONOIC FREQUENCY COMB GENERATION VIA 1:1 MODE COUPLING IN MoS ₂ 2D NANOELECTROMECHANICAL RESONATORS Jaesung Lee ¹ , Steven W. Shaw ² , and Philip XL. Feng ¹ ¹ University of Florida, USA and ² Florida Institute of Technology, USA	503
534-b	INFLUENCE OF CLAMPING LOSS AND ELECTRICAL DAMPING ON NONLINEAR DISSIPATION IN MICROMECHANICAL RESONATORS James M.L. Miller ^{1,2,3} , Anne L. Alter ³ , Nicholas E. Bousse ³ , Yunhan Chen ³ , Ian B. Flader ³ , Dongsuk D. Shin ³ , Thomas W. Kenny ³ , and Steven W. Shaw ^{1,2} ¹ Florida Institute of Technology, USA, ² Michigan State University, USA, and ³ Stanford University, USA	507
	b - Emerging Technologies and New Opportunities for MEMS/NEMS	
	Quantum Devices and Systems with MEMS/NEMS	
118-b	OBSERVATION OF PULL-IN BY CASIMIR FORCE IN MEMS-CONTROLLED NANOGAP FABRICATED BY SILICON CLEAVAGE Masaki Shimofuri, Amit Banerjee, Yoshikazu Hirai, and Toshiyuki Tsuchiya Kyoto University, JAPAN	511

b - Emerging Technologies and New Opportunities for MEMS/NEMS

c ·	- Industry MEMS and Advancing MEMS for Products and Sustainability	
	Measurement Methods for Product Specs	
510-с	ELECTRO-OPTICAL TESTING SOLUTION AT WAFER LEVEL FOR MEMS PZT MICROMIRRORS ACTUATION AND MECHANICAL ANGLE SENSING Alessandro Della Bitta and Marco Rossi STMicroelectronics, ITALY	515
c ·	- Industry MEMS and Advancing MEMS for Products and Sustainability	
	MEMS/NEMS - CMOS Integration	
409-с	GIGAHERTZ ULTRASONIC MULTI-IMAGING OF SOIL TEMPERATURE, MORPHOLOGY, MOISTURE, AND NEMATODES Anuj Baskota, Justin Kuo, and Amit Lal Geegah Inc., USA	519
511-с	FLIP-CHIP IR AND FORCE SENSORS FOR BOTH TOUCH AND TOUCHLESS ELEVATOR BUTTONS APPLICATIONS Tien Chou ¹ , Ya-Chu Lee ¹ , Fuchi Shih ¹ , Yuanyuan Huang ¹ , Sung-Cheng Lo ¹ , Tung-Lin Chien ¹ , Chih-Fan Hu ² , and Weileun Fang ¹ **National Tsing Hua University, TAIWAN and **PixArt Imaging Inc., TAIWAN	523
	d - Materials, Fabrication and Packaging for Generic MEMS and NEMS	
	Digital Micromanufacturing	
119-d	PATTERN RECONFIGURABLE ULTRASONIC SOUND SOURCE USING LASER-INDUCED GRAPHENE INTERDIGITATED ELECTRODES Yuki Okamoto, Yusuke Takei, Thanh-Vinh Nguyen, Shinya Kano, Takeshi Kobayashi, and Masaaki Ichiki National Institute of Advanced Industrial Science and Technology (AIST), JAPAN	527
410-d	3D PRINTING METALS AT THE MICROSCALE: ELECTROPLATING PYROLYZED CARBON MEMS Joshua B. Tyler ^{1,2} , Gabriel L. Smith ³ , John Cumings ² , and Nathan Lazarus ³ ¹ Oak Ridge Associated Universities, USA, ² University of Maryland, USA, and ³ US Army Research Lab, USA	531
	d - Materials, Fabrication and Packaging for Generic MEMS and NEMS	
	New & Emerging Materials for MEMS/NEMS	
120-d	VISIBLE BLIND QUADRANT SUN POSITION SENSOR IN A SILICON CARBIDE TECHNOLOGY Joost Romijn ¹ , Sten Vollebregt ¹ , Alexander May ² , Tobias Erlbacher ² , Henk W. van Zeijl ¹ , Johan Leijtens ³ , Guo Zhang ¹ , and Pasqualina M. Sarro ¹ Delft University of Technology, NETHERLANDS, ² Fraunhofer IISB, GERMANY, and ³ Lens R&D, NETHERLANDS	535
213-d	AN INNOVATIVE AUXETIC ELECTRICALLY-TUNABLE MEMS MECHANICAL FILTER	539

214-d	PZT THIN FILM WITH POLYCRYSTALLINE CRACK STOPPER STRUCTURE Yu Katsumata, Shinya Yoshida, and Shuji Tanaka Tohoku University, JAPAN	543
216-d	PYROELECTRICALLY-CHARGED FLEXIBLE PIEZOELECTRET SENSORS: ROUTE TOWARDS SUSTAINABLE FUNCTIONAL ELECTRONICS Rui Pinto, Pedro González-Losada, Mohammadmahdi Faraji, and KB Vinayakumar International Iberian Nanotechnology Laboratory, PORTUGAL	547
308-d	OBSERVATION OF HIGH TEMPERATURE COEFFICIENT OF FREQUENCY (TCF) IN BISMUTH OXYIODIDE (BIOI) VIBRATING NANOMECHANICAL RESONATORS Song Wu, Fei Xiao, Jiankai Zhu, Yachun Liang, Chenyin Jiao, Shenghai Pei, and Zenghui Wang University of Electronic Science and Technology of China, CHINA	551
309-d	VOLTAGE-CONTROLLED RECONFIGURABLE MOLYBDENUM DISULFIDE NANOELECTROMECHANICAL RESONATOR Bo Xu, Yachun Liang, Chenyin Jiao, Jianglong Chen, Zejuan Zhang, Jiankai Zhu, Jing Li, Qingyang Deng, and Zenghui Wang University of Electronic Science and Technology of China, CHINA	554
411-d	A HIGH SEEBECK COEFFICIENT THERMOELECTRIC GENERATOR BASED ON A SELF-HEALING IONOGEL Yu Long, Peisheng He, Yande Peng, and Liwei Lin University of California, Berkeley, USA	557
	d - Materials, Fabrication and Packaging for Generic MEMS and NEMS	
	New Fabrication Processes for Making MEMS/NEMS	
412-d	A SELF-ALIGNED WAFER-SCALE GATE-ALL-AROUND APERTURE DEFINITION METHOD FOR SILICON NANOSTRUCTURES Dirk Jonker, Erwin J.W. Berenschot, Roald M. Tiggelaar, Niels R. Tas, Arie van Houselt, and Han J.G.E. Gardeniers University of Twente, NETHERLANDS	561
	d - Materials, Fabrication and Packaging for Generic MEMS and NEMS	
	Packaging & Assembly	
121-d	IMPROVED VACUUM LEVEL OF SILICON-MIGRATION-SEALED CAVITY BY HYDROGEN DIFFUSION ANNEALING FOR WAFER-LEVEL PACKAGING FOR MEMS Hirotaka Suzuki, Yukio Suzuki, Yoshiaki Kanamori, and Shuji Tanaka Tohoku University, JAPAN	565
413-d	TRANSIENT CLOSED-LOOP HEATING FOR LOCALIZED MEMS BONDING	569
	e – MEMS Actuators and PowerMEMS	
	Actuator Components & Systems	
122-е	AN ON-CHIP BISTABLE STRUCTURE FOR EXTRACTING THE IMPACT FRACTURE STRENGTH OF THE MICROSTRUCTURE	573

123-е	FLEXIBLE AND DEFORMABLE ORGANIC FIELD-EFFECT TRANSISTOR BY MICROELECTRONIC INKJET PRINTING Jian Zhang, Hao Yu, and Kai Tao Northwestern Polytechnical University, CHINA	577
124-е	THREE AXIS ACTUATION OF MOVING COIL TYPE ELECTROMAGNETIC MEMS ACTUATOR FOR OPTICAL IMAGE STABILIZATION Huayu Wang, Shunsuke Yamada, and Shuji Tanaka Tohoku University, JAPAN	580
218-е	CHARACTERIZATIONS OF OPTIMIZED MICROSHUTTER ARRAYS FOR SPACE BORNE OBSERVATORY APPLICATIONS Kyowon Kim ^{1,2} , Ming Ke ^{1,3} , Matthew A. Greenhouse ¹ , Alexander S. Kutyrev ^{1,4} , Rainer Fettig ^{1,5} , Stephan R. McCandliss ⁶ , Carl A. Kotecki ¹ , Regis P. Brekosky ¹ , Gang Hu ^{1,2} , Beth M. Paquette ¹ , Timothy M. Miller ¹ , Frederick H. Wang ¹ , Nicholas P. Costen ¹ , Samelys Rodriguez ¹ , Vorachai Kluengpho ^{1,2} , Knute A. Ray ^{1,2} , Eduardo J. Aguayo ^{1,7} , Kenneth M. Simms ^{1,8} , and Meng-Ping Chang ¹ ¹ NASA Goddard Space Flight Center, USA, ² Science Systems and Applications Inc., USA, ³ University of California, Los Angeles, USA, ⁴ University of Maryland, USA, ⁵ Beacon System Inc., USA, ⁶ Johns Hopkins University, USA, ⁷ Newton LLC, USA, and ⁸ Adnet Systems Inc., USA	584
219-е	HYBRID INTEGRATION OF A SHAPE MEMORY ALLOY ACTUATOR FOR MICRO THERMAL MECHANICAL SYSTEMS Daniel Hoffmann ¹ , Kenny Pagel ² , Sven Spieth ¹ , Simon Herrlich ¹ , and Alfons Dehé ^{1,3} ¹ Hahn-Schickard, GERMANY, ² Fraunhofer IWU, GERMANY, and ³ University of Freiburg, GERMANY	588
610-е	FLEXIBLE PARAMETRIC SPEAKER WITH ULTRA-THIN PZT/SI MEMS CHIPS INTEGRATED ON PAPER SUBSTRATE Takeshi Kobayashi, Toshihiro Takeshita and Atsushi Oouchi National Institute of Advanced Industrial Science and Technology (AIST), JAPAN	592
	e – MEMS Actuators and PowerMEMS	
	Energy Harvesting Materials, Structures, and Transducers	
222-е	SILOXENE-POLYMER COMPOSITE NANOFIBER TOWARDS HIGH-PERFORMANCE TRIBOELECTRIC HARVESTERS AND SELF-POWERED SENSORS Trilochan Bhatta, Sudeep Sharma, Pukar Maharjan, Kumar Shrestha, Sanghyun Lee, and Jae Yeong Park Kwangwoon University, KOREA	596
310-е	HIGH DENSITY MICRO-THERMOELECTRIC GENERATOR BASED ON ELECTRODEPOSITION OF BI ₂ TE ₃ AND SB ₂ TE ₃ Cheng Hou Chan, Nguyen Van Toan, and Takahito Ono Tohoku University, JAPAN	600
311-е		
	MASS-PRODUCIBLE ENERGY GENERATOR WITH NANO GAP FOR DIRECT ELECTRIFICATION FROM LOW-GRADE HEAT	604

512-е	KIRIGAMI THERMOELECTRIC GENERATOR WITH HIGH FLEXIBILITY AND HIGH PERFORMANCE	612
	Shingo Terashima and Eiji Iwase Waseda University, JAPAN	
513-е	POWER-HARVESTING FLEXIBLE PRINTED CIRCUIT BOARD WITH BUILT-IN MECHANICAL METAMATERIAL	616
	Mikito Kitazawa ¹ , Vivek A. Menon ¹ , Hiroaki Honma ² ,	
	Gen Hashiguchi ³ , Hiroshi Toshiyoshi ² , and Takaaki Suzuki ¹	
	¹ Gunma University, JAPAN, ² University of Tokyo, JAPAN, and ³ Shizuoka University, JAPAN	
	e – MEMS Actuators and PowerMEMS	
	Manufacturing for Actuators & Power MEMS	
514-е	PIEZOELECTRIC MEMS SPEAKER WITH	
	RIGID-FLEXIBLE-COUPLING ACTUATION LAYER	620
	Qi Wang, Tao Ruan, Qingda Xu, Yuzhi Shi, Bin Yang, and Jingquan Liu Shanghai Jiao Tong University, CHINA	
	e – MEMS Actuators and PowerMEMS	
	Materials for Actuators & Power MEMS	
312-е	2D SILOXENE/M ₀ S ₂ BASED SOLID-STATE SYMMETRIC	
	SUPERCAPACITOR FOR ENERGY HARVESTING-STORAGE SYSTEM	624
	Rajendran Ramachandran, Wang Yu, Anxin Luo, Zong-Xiang Xu, and Fei Wang	
	Southern University of Science and Technology, CHINA	
313-е	A MINIATURIZED LIGHT-DRIVEN SOFT CRAWLER BASED ON LIQUID	
	CRYSTAL ELASTOMER WITH HIGH-EFFICIENT PHOTOTHERMAL THIN-FILM	628
	Bo-You Lin, Yen-Peng Liao, and Yao-Joe Yang	
	National Taiwan University, TAIWAN	
	e – MEMS Actuators and PowerMEMS	
	Power MEMS Components & Systems	
314-е	A MINIATURIZED PLANAR SOLID OXIDE FUEL CELL	
	BASED ON STAINLESS STEEL MICROFLUIDIC CHANNELS	632
	Hongyu Sui and Hao Ren	
	ShanghaiTech University, CHINA	
415-е	EXPERIMENTAL DEMONSTRATION OF MINIATURIZED MAGNETOELECTRIC	
	WIRELESS POWER TRANSFER SYSTEM FOR IMPLANTABLE MEDICAL DEVICES	636
	Dibyajyoti Mukherjee and Dhiman Mallick Indian Institute of Technology Delhi, INDIA	
	maian institute of Technology Deini, INDIA	
	e – MEMS Actuators and PowerMEMS	
	Self-Powered Devices and Microsystems	
12F a	-	
125-е	FABRICATION AND EVALUATION OF A FLEXIBLE BATTERY FOR WEARABLE BIOMEDICAL APPLICATIONS	
	Daria M. Bentley, Rachel Heald, and Shaurya Prakash	040
	Ohio State University, USA	

	Other Actuators & Power MEMS	
126-е	A PIEZOELECTRIC WATER SKATING MICROROBOT STEERS THROUGH RIPPLE INTERFERENCE Yuhang Du, Bei Peng, Wu Zhou, and Yichuan Wu University of Electronic Science and Technology of China, CHINA	644
226-е	MAGNETICALLY COUPLED MICROELECTROMECHANICAL RESONATORS FOR LOW-FREQUENCY WIRELESS POWER TRANSFER	648
	f - MEMS Physical Sensors	
	Fluidic Sensors	
127-f	A FLEXIBLE THERMAL FLOW SENSOR WITH QUADRUPLE HEATERS AND SUSPENDED STRUCTURE FOR PERFORMANCE ENHANCEMENT Xiaoyi Wang ¹ , Xingru Chen ¹ , Yang Deng ¹ , Yik Kin Cheung ¹ , Peng Jiang ¹ , Wei Xu ² , and Hongyu Yu ¹ Hong Kong University of Science and Technology, CHINA and ² Shenzhen University, CHINA	652
315-f	A BULK-MICROMACHINED RESONANT DIFFERENTIAL PRESSURE MICROSENSOR INSENSITIVE TO TEMPERATURE AND STATIC PRESSURE Chao Cheng ^{1,2} , Jiahui Yao ^{1,2} , Yulan Lu ¹ , Chao Xiang ^{1,2} , Jian Chen ^{1,2} , Deyong Chen ^{1,2} , and Junbo Wang ^{1,2} Chinese Academy of Sciences (CAS), CHINA and ² University of Chinese Academy of Sciences, CHINA	656
316-f	A RESONANT HIGH-PRESSURE SENSOR BASED ON SIX CAVITIES Jie Yu ^{1,2} , Yulan Lu ^{1,2} , Deyong Chen ^{1,2} , Junbo Wang ^{1,2} , Jian Chen ¹ , and Bo Xie ¹ ¹ Chinese Academy of Sciences (CAS), CHINA and ² University of Chinese Academy of Sciences, CHINA	660
317-f	APPLICATION OF SILICON PIEZORESISTIVE EFFECT IN MEMS EMBEDDED MICROFLUIDIC COOLING	664
318-f	NEEDLE TYPE PRESSURE SENSOR WITH PARYLENE MEMBRANE AND SILICONE OIL INSIDE Takuto Kishimoto and Hidetoshi Takahashi Keio University, JAPAN	668
416-f	METAL-OXIDE THIN-FILM TRANSISTOR FOR MONOLITHIC INTEGRATION WITH HIGH-PRESSURE MEMS PRESSURE SENSOR Dequan Lin ¹ , Runxiao Shi ¹ , Man Wong ¹ , and Kevin Chau ^{1,2} ¹ Hong Kong University of Science and Technology, CHINA and ² Chinese Academy of Sciences (CAS), CHINA	672
417-f	SILICON-RICH SILICON NITRIDE MICROCHANNELS TO DETERMINE FLUID COMPOSITION BY NEAR INFRARED ABSORBANCE Anneirudh Sundararajan ¹ , Pep Canyelles Pericas ¹ , Remco J. Wiegerink ¹ , and Joost C. Lötters ^{1,2} ¹ University of Twente, NETHERLANDS and ² Bronkhorst High-Tech BV, NETHERLANDS	676

 $e-MEMS \ Actuators \ and \ PowerMEMS$

f - MEMS Physical Sensors Force & Displacement Sensors

128-f	INTEGRATIVE HYDROGEL-BASED TACTILE SENSOR BY TRIBOELECTRIC AND PIEZORESISTIVE EFFECT FOR DETECTING DYNAMIC AND STATIC PRESSURE Jiahao Yu ¹ , Zhensheng Chen ¹ , Zixuan Wu ² , Honglong Chang ¹ , Jin Wu ² , and Kai Tao ¹ Northwestern Polytechnical University, CHINA and ² Sun Yat-sen University, CHINA	680
129-f	MINIATURE ROBUST HIGH-BANDWIDTH FORCE SENSOR WITH MECHANICALLY AMPLIFIED PIEZORESISTIVE READOUT	684
130-f	MULT-AXIAL TACTILE SENSOR USING STANDING LIG CANTILEVERS ON POLYIMIDE FILM Rihachiro Nakashima and Hidetoshi Takahashi Keio University, JAPAN	688
131-f	TRACING THE FORCE-DISPLACEMENT CHARACTERISTICS OF NON-LINEAR MICROSYSTEMS BY IN-SITU CHARACTERIZATION Philip Schmitt and Martin Hoffmann Ruhr University Bochum, GERMANY	691
319-f	A HIGH TEMPERATURE FORCE SENSOR WITH LOW TEMPERATURE DRIFT OPERATED AT 500°C Muhannad Ghanam, Thomas Bilger, Frank Goldschmidtboeing, Andreas Bucherer, and Peter Woias University of Freiburg, GERMANY	695
320-f	DEVELOPMENT OF A MINIMALLY INVASIVE HIGH-RESOLUTION TACTILE SENSOR FOR ACQUIRING DELICATE HAPTIC CHANGES IN HAIR	699
418-f	3D PRINTED MICRO FORCE PLATE FOR MEASURING THE GROUND REACTION FORCE OF A FRUIT FLY Takumi Sugimoto ¹ , Hirofumi Toda ² , and Hidetoshi Takahashi ¹ ¹ Keio University, JAPAN and ² University of Tsukuba, JAPAN	703
419-f	VERTICALLY-ALIGNED CARBON NANOTUBES-EMBEDDED PDMS MICROSTRUCTURES FOR FLEXIBLE TACTILE SENSOR ARRAY WITH HIGH SENSITIVITY AND DURABILITY	706
515-f	A DUAL SENSING MODES CAPACITIVE TACTILE SENSOR FOR PROXIMITY AND TRI-AXIAL FORCES DETECTION Yen-Lin Chen, Yuanyuan Huang, Fuchi Shih, Tien Chou, Tung-Lin Chien, Rongshun Chen, and Weileun Fang National Tsing Hua University, TAIWAN	710
516-f	NATURAL FREQUENCY MEASUREMENTS OF SEAL WHISKERS USING A 3D-PRINTED MEMS GRAPHENE-BASED CANTILEVER SENSOR Xingwen Zheng ¹ , Amar M. Kamat ¹ , Ming Cao ¹ , and Ajay Giri Prakash Kottapalli ^{1,2} ¹ University of Groningen, NETHERLANDS and ² Massachusetts Institute of Technology, USA	714

f - MEMS Physical Sensors Gas & Chemical Sensors

235-f	FAR INFRARED PAS SENSOR USING SILICON PIEZORESISTIVE CANTILEVER FOR CONTINUOUS NON-INVASIVE BLOOD GLUCOSE MEASUREMENT Kentaro Noda, Takuya Tsukagoshi, and Isao Shimoyama Toyama Prefectural University, JAPAN	718
236-f	FIELD DEVELOPMENT OF A NANOGAP GAS SENSOR FOR CROP DAMAGE DETECTION Shakir-ul Haque Khan ¹ , Mohit Karkhanis ¹ , Bryan Hatasaka ¹ , Sayali Tope ¹ , Seungbeom Noh ¹ , Rana Dalapati ¹ , Ashrafuzzaman Bulbul ¹ , Ravi V. Mural ² , Aishwaryadev Banerjee ¹ , KyeongHeon Kim ³ , James C. Schnable ² , Mingyue Ji ¹ , Carlos H. Mastrangelo ¹ , Ling Zang ¹ , and Hanseup Kim ¹ ¹ University of Utah, USA, ² University of Nebraska, Lincoln, USA, and ³ Gyeongsang National University, KOREA	720
321-f	A GAS SENSOR BASED ON ZIF-8-COATED COUPLED RESONATORS WITH ENHANCED SENSITIVITY AND REVERSIBLE DETECTION ABILITY Chenxi Wang ¹ , Chen Wang ¹ , Benzheng Xia ¹ , Hemin Zhang ¹ , Aleksander Matavž ¹ , Yuan Wang ² , Aojie Quan ¹ , Min Tu ³ , Linlin Wang ¹ , Michel D. Cooman ¹ , Rob Ameloot ¹ , and Michael Kraft ¹ *IKU Leuven, BELGIUM, *2 Huazhong University of Science and Technology, CHINA, and *3 Chinese Academy of Sciences (CAS), CHINA	724
322-f	A HIGH-ORDER MEMBRANE RESONATOR ARRAY FOR GRAVIMETRIC AMMONIA SENSING WITH SUB-PPM LIMIT OF DETECTION Zhenming Liu, Ardalan Lotfi, Mojtaba H. Shamami, Peter J. Hesketh, and Farrokh Ayazi Georgia Institute of Technology, USA	728
517-f	DEVELOPMENT OF NANOMECHANICAL MULTISENSORY ARRAYS FOR DETECTION OF HAZARDOUS VOLATILE MATERIALS AND GASES Md. Abdul Momin ¹ , Zhuqing Wang ¹ , Masaya Toda ¹ , Mai Yamazaki ² , Krzysztof Moorthi ² , Yasuaki Kawaguchi ² , and Takahito Ono ¹ Tohoku University, JAPAN and ² Mitsui Chemicals, Inc., JAPAN	732
518-f	FAILURE MECHANISM OF PALLADIUM-SILVER NANOCATALYSTS-SENSITIZED HYDROGEN MICROSENSOR REVEALED BY IN-SITU TRANSMISSION ELECTRON MICROSCOPY Ming Li ^{1,2} , Xueqing Wang ^{1,2} , Pengcheng Xu ^{1,2} , Ying Chen ^{1,2} , and Xinxin Li ^{1,2} Chinese Academy of Sciences (CAS), CHINA and ² University of Chinese Academy of Sciences, CHINA	735
519-f	MECHANICALLY MAGNIFIED SENSITIVITY ENHANCEMENT WITH MICRO-STEP SUBSTRATE FOR EYE-RECOGNIZABLE STRUCTURAL-COLOR HYDROGEL BIOCHEMICAL SENSORS Shota Yamawaki and Hiroaki Onoe Keio University, JAPAN	739
	f - MEMS Physical Sensors	
	Inertial Sensors	
132-f	A MODE LOCALIZED FORCE TRANSDUCER WITH REDUCED FEEDTHROUGH VIA 1:2 INTERNAL RESONANCE ACTUATION Jianlin Chen ¹ , Hemin Zhang ² , Takashiro Tsukamoto ¹ , Michael Kraft ² , and Shuji Tanaka ¹ Tohoku University, JAPAN and ² KU Leuven, BELGIUM	743
133-f	ANGULAR ACCELEROMETER WITH INTEGRATED LIQUID SPIRAL CHANNEL AND LIG SENSING ELEMENT ON POLYIMIDE FILM Rihachiro Nakashima and Hidetoshi Takahashi Keio University, JAPAN	747

134-f	EXCELLENT SCALE FACTOR PERFORMANCE FOR WHOLE-ANGLE MICRO-SHELL RESONATOR GYROSCOPE Jiangkun Sun¹, Kui Liu², Sheng Yu¹, Yongmeng Zhang¹, Xiang Xi¹, Kun Lu¹, Yan Shi¹, Xuezhong Wu¹, and Dingbang Xiao¹ ¹ National University of Defense Technology, CHINA and ² Xi'an Institute of Modern Control Technology, CHINA	. 750
135-f	NOVEL ESTIMATION METHOD FOR DIELECTRIC LOSS QUALITY FACTOR IN COMPOSITE SOI/PZT DEVICES Vishnu Kumar ¹ , Sudhanshu Tiwari ² , Shreeraj Joshi ¹ , and Saurabh Arun Chandorkar ¹ Indian Institute of Science, Bengaluru, INDIA and ² Purdue University, USA	. 754
136-f	PROTON RADIATION EFFECT ON MECHANICAL STRUCTURE OF SILICON MEMS GYROSCOPES Shaoquan Chen, Jian Cui, and Qiancheng Zhao Peking University, CHINA	. 758
137-f	THERMAL CHARACTERIZATION OF SCALE-FACTOR AND ZERO-RATE OFFSET IN NEAR-NAVIGATION-GRADE NEMS-BASED GYROSCOPES Andrea Buffoli ¹ , Marco Gadola ¹ , Marc Sansa ² , Patrice Rey ² , Philippe Robert ² , and Giacomo Langfelder ¹ Politecnico di Milano, ITALY and ² University Grenoble Alpes, CEA Leti, FRANCE	. 762
323-f	A NOVEL QUALITY FACTOR TRIMMING METHOD FOR MULTI-RING MEMS RESONATORS BASED ON THERMOELASTIC DISSIPATION	. 766
324-f	SILICON MEMS GYROSCOPE WITH QUATREFOIL SUSPENSION SYSTEM ACHIEVING 1 MILLION QUALITY FACTOR Madan Parajuli ¹ , Guillermo Sobreviela ² , and Ashwin A. Seshia ¹ ¹ University of Cambridge, UK and ² Silicon Microgravity Ltd., UK	. 770
520-f	A MEMS ELECTRO-MECHANICAL CO-OPTIMIZATION PLATFORM FEATURING FREEFORM GEOMETRY OPTIMIZATION BASED ON A GENETIC ALGORITHM	. 774
521-f	THELMA-DOUBLE: A NEW TECHNOLOGY PLATFORM FOR MANUFACTURING OF HIGH-PERFORMANCE MEMS INERTIAL SENSORS Federico Vercesi, Lorenzo Corso, Giorgio Allegato, Gabriele Gattere, Luca Guerinoni, Carlo Valzasina, Andrea Nomellini, Anna Alessandri, and Ilaria Gelmi STMicroelectronics, ITALY	. 778
611-f	A NAVIGATION-GRADE MEMS VIBRATING BEAM ACCELEROMETER	. 782
612-f	MODE-MATCHED MULTI-RING DISK RESONATOR USING (100) SINGLE CRYSTAL SILICON	. 786
613-f	TEMPERATURE SENSITIVITY OF ANGULAR GAIN IN MICRO RATE-INTEGRATING GYROSCOPES (MRIG) Daryosh Vatanparvar and Andrei M. Shkel University of California, Irvine, USA	. 790

	Manufacturing Techniques for Physical Sensors	
138-f	LASER DIRECT-WRITE SENSORS ON CFR-PEEK FOR SMART ORTHOPEDIC IMPLANTS	. 794
	Xingjian Hu ¹ , Jincai Huang ¹ , Yanzhuo Wei ¹ , Haiyan Zhao ¹ , Zhe Zhao ^{1,2} , and Xining Zang ¹ ¹ Tsinghua University, CHINA and ² Tsinghua Changgung Hospital, CHINA	
325-f	A HIGHLY-SENSITIVE PRESSURE SENSOR BASED ON PERCOLATIVE NANOPARTICLE ARRAYS FORMED BY DEWETTING EFFECT Min-Xian Cai, Jui-Chen Chang, Wei-Yi Wang, Ying-Hsuan Chiu, and Yao-Joe Yang National Taiwan University, TAIWAN	. 798
	f - MEMS Physical Sensors	
	Materials for Physical Sensors	
420-f	AN ULTRA-HIGH SENSITIVE WEARABLE STRAIN SENSOR BASED ON POLYHEDRAL STRUCTURED N-CO ₃ O ₄ COATED LASER-INDUCED GRAPHENE	. 802
522-f	ZIRCONIUM OXYNITRIDE FILM ENABLING HIGH SENSITIVITY AND STABILITY TEMPERATURE SENSING NEAR NORMAL TEMPERATURE Yanjie Li, Minmin You, Xiuyan Li, Bin Yang, Zude Lin, and Jingquan Liu Shanghai Jiao Tong University, CHINA	. 806
	f - MEMS Physical Sensors	
	Metrology and Measurement Techniques for MEMS/NEMS Sensors	
139-f	A LOW-NOISE FREQUENCY READOUT SYSTEM FOR BLUE-SIDEBAND EXCITED RESONANT MEMS SENSORS Lei Xu, Lu Gao, Jingqian Xi, Fangzheng Li, Jianyuan Pi, Chengxin Li, Yuan Wang, Huafeng Liu, and Chun Zhao Huazhong University of Science and Technology, CHINA	. 810
140-f	IN-PLANE AND OUT-OF-PLANE ANALYSES OF ENCAPSULATED MEMS DEVICE BY IR LASER VIBROMETRY Malte Ennen and Michael L. Lherbette SmarAct GmbH, GERMANY	. 814
240-f	A NOVEL 3D TEMPERATURE SENSOR BASED ON BURIED-GATE GRAPHENE FIELD EFFECT TRANSISTORS	. 818
	Yuan Fang, Chenggang Tang, Jingye Sun, Lingbing Kong, Mingqiang Zhu, Tao Deng, and Yinghong Wen Beijing Jiaotong University, CHINA	
	f - MEMS Physical Sensors	
	Nanoscale Physical Sensors	
523-f	A PHASE-CONSISTENT MODEL FOR THE SPECTRAL TRANSFER FUNCTION OF CARBON NANOTUBE RESONATORS Morten Vollmann, Cosmin Roman, and Christofer Hierold ETH Tomich SWITZERI AND	. 822

f - MEMS Physical Sensors

	Sonic & Ultrasonic MEMS Transducers	
241-f	HIGH-PERFORMANCE PMUTS WITH BOSSED DIAPHRAGMS FOR ACOUSTIC AND NEAR-ULTRASOUND APPLICATIONS Harshvardhan Gupta, Bibhas Nayak, Anuj Ashok, and Rudra Pratap Indian Institute of Science, INDIA	820
243-f	IMPLANTABLE MEDICAL DEVICES DETECTION BASED ON PIEZOELECTRIC MICROMACHINED ULTRASONIC TRANSDUCERS AND A MICROPYTHON INTERNET OF MEDICAL THINGS NODES Flavius Pop, Bernard Herrera, and Matteo Rinaldi Northeastern University, USA	830
244-f	SENSITIVITY ENHANCEMENT OF AN ACOUSTIC SENSOR VIA PARALLEL HELMHOLTZ RESONATORS Ruka Wada and Hidetoshi Takahashi Keio University, JAPAN	833
247-f	WIRELESS ULTRASONIC POWER TRANSFER FOR IMPLANTABLES VIA SCANDIUM-DOPED ALN PMUT ARRAYS	837
326-f	HIGHLY SENSITIVE LOW-FREQUENCY ACOUSTIC SENSOR USING PIEZORESISTIVE CANTILEVER Thanh-Vinh Nguyen ¹ , Yuki Okamoto ¹ , Toshihiro Takeshita ¹ , Yusuke Takei ¹ , Hironao Okada ¹ , Khoa Nguyen ² , Hoang-Phuong Phan ² , and Masaaki Ichiki ¹ ¹ National Institute of Advanced Industrial Science and Technology (AIST), JAPAN and ² Griffith University, AUSTRALIA	84 1
327-f	PRESSURE ENHANCING AND OPERATING FREQUENCY TUNABLE PMUT WITH COMPRESSIBLE PARYLENE HELMHOLTZ RESONANTING CHAMBER AND ACTIVE BACKING PLATE Chung-Hao Huang and Guo-Hua Feng National Tsing Hua University, TAIWAN	845
328-f	TUNABLE PLANAR ACOUSTIC NOTCH FILTER UTILIZING PNEUMATIC DEFORMING HELMHOLTZ RESONATOR ARRAY Fumiya Mizukoshi and Hidetoshi Takahashi Keio University, JAPAN	849
524-f	A THIN-FILM PIEZOELECTRIC SPEAKER BASED ON AN ACTIVE MICROSTRUCTURE ARRAY Jinchi Han, Jeffrey H. Lang, and Vladimir Bulović Massachusetts Institute of Technology, USA	852
	f - MEMS Physical Sensors	
	Other Physical Sensors	
141-f	A HIGH-RESOLUTION MASS SENSOR BASED ON TWO THERMAL-PIEZORESISTIVE SELF-SUSTAINED RESONATORS COUPLED VIA AN ARCHING MEMBRANE	850

f - MEMS Physical Sensors

248-1	TUNED-MASS-DAMPER (TMD) BASED VOLTMETER Pin-Chun Huang, Ting-Yi Chen, Chun-Pu Tsai, and Wei-Chang Li National Taiwan University, TAIWAN	860
525-f	A WIRELESS FLEXIBLE SMART BANDAGE FOR WOUND MONITORING	864
526-f	BANDWIDTH AND SENSITIVITY ENHANCEMENT OF PIEZOELECTRIC MEMS ACOUSTIC EMISSION SENSOR USING MULTI-CANTILEVERS Yongfang Li ¹ , Takahiro Omori ¹ , Kazuo Watabe ¹ , and Hiroshi Toshiyoshi ² Toshiba Corporation, JAPAN and ² University of Tokyo, JAPAN	868
	g – Micro- and Nanofluidics	
	Biological and Medical Microfluidics and Nanofluidics	
142-д	DEVELOPMENT OF DROPLET MICROFLUIDICS ENABLING QUANTITATIVE MEASUREMENTS OF MULTIPLE PROTEIONS AT SINGLE-CELL LEVEL Hongyu Yang ^{1,2} , Guang Yang ^{1,2} , Ting Zhang ^{1,2} , Deyong Chen ^{1,2} , Junbo Wang ^{1,2} , and Jian Chen ^{1,2} ¹ Chinese Academy of Sciences (CAS), CHINA and ² University of Chinese Academy of Sciences, CHINA	872
143-д	MICROFLUIDIC DEVICE INTEGRATED WITH DEFORMABLE 3D AGPDMS BEAM FOR BLOOD COAGULATION MONITORING Tianyi Li ¹ , Yao Cai ¹ , Duli Yu ¹ , Yuan Wang ^{2,3} , and Xiaoxing Xing ¹ Beijing University of Chemical Technology, CHINA, Beijing Anzhen Hospital, Capital Medical University, CHINA, and Ministry of Education, CHINA	876
144-д	MICROFLUIDIC IMPEDANCE FLOW CYTOMERY FOR SINGLE-CELL PHYSIOLOGY STATES ANALYSIS OF TUMOR CELLS TREATED WITH CHEMOTHERAPY DRUGS	880
250-д	MICROFLUIDIC PLATFORM TO STUDY ELECTRIC FIELD BASED ROOT TARGETING BY PATHOGENIC ZOOSPORES Debolina Sarkar ¹ , Yiling Sun ^{1,2} , Ayelen Tayagui ^{1,2} , Ryan Adams ¹ , Ashley Garrill ¹ , and Volker Nock ^{1,2} ¹ University of Canterbury, NEW ZEALAND and ² MacDiarmid Institute for Advanced Materials and Nanotechnology, NEW ZEALAND	884
329-д	CONTINUOUS-FLOW SIZE FRACTIONATION OF EXTRACELLULAR VESICLES USING A MICRIFLUIDIC JUNCTION FEATURING ELECTRODE BRIDGES	888
330-д	THREAD-BASED FLUIDIC PLATFORM WITH PENCIL GRAPHITE ELECTRODES FOR ELECTROCHEMICAL ANALYZING MEDICINE METABOLITES IN URINE Shian-Yi Hsu and Che-Hsin Lin National Sun Yat-sen University, TAIWAN	892
614-g	NOVEL BI-DIRECTIONAL DUAL-FLOW-ROOTCHIP TO STUDY EFFECTS OF OSMOTIC STRESS ON CALCIUM SINGALLING IN ARABIDOPSIS ROOTS	896

	Generic Microfluidics & Nanofluidics	
527-g	STABLE GENERATION OF SINGLE-MICRON DROPLETS AND HIGHLY EFFICIENT ENCAPSULATION OF CELLS BY MULTI-BRANCH CHANNELS Seito Shijo, Daiki Tanaka, Masahiro Furuya, Tetsushi Sekiguchi, and Shuichi Shoji Waseda University, JAPAN	900
615-g	ACOUSTOFLUIDIC BEHAVIORS OF ZNO/AL PLATE/SHEET ACOUSTIC WAVE DEVICES USING HYBRID MODES	904
	g – Micro- and Nanofluidics	
I	ntegrated/Embedded Microfluidics and Nanofluidic Systems & Platforms	<u> </u>
145-g	BULK ACOUSTIC WAVE BASED MICROFLUIDIC PARTICLE SORTING WITH CAPACITIVE MICROMACHINED ULTRASONIC TRANSDUCERS Shinnosuke Kawasaki ¹ , Jia-Jun Yeh ¹ , Marta Saccher ¹ , Jian Li ¹ , and Ronald Dekker ² Delft University of Technology, NETHERLANDS and ² Philips Research, NETHERLANDS	
331-g	SLIP-X-CHIP: SLIDING MICROFLUIDIC PLATFORM WITH CROSS-FLOW	912
421-g	DEVELOPMENT OF MICROMACHINED PARYLENE-BASED ELECTROACTIVE MEMBRANES WITH EMBEDDED MICROFLUIDIC CHANNELS FOR BIOLOGICAL APPLICATIONS Fernando A. Rebolledo Uscanga, Mark C. Pierce, and Jeffrey D. Zahn Rutgers, State University of New Jersey, USA	915
528-g	ONE-STEP IMMUNOASSAYS USING INTEGRATED NANOROD ARRAYS FOR RAPID AND SENSITIVE DETECTION OF CANCER BIOMARKERS Yuxin Ye, Fan Yang, and Zhen Cao Zhejiang University, CHINA	919
616-g	EMBEDDED MICROCHANNEL COOLER WITH MANIFOLD FOR IC CHIPS	923
	g – Micro- and Nanofluidics	
	Manufacturing for Micro- and Nanofluidics	
146-g	MAXIMIZING HETEROGENEOUS BONDING STRENGTH BETWEEN PDMS/PMMA FOR MANUFACTURING ELASTOMER MICROVALVE SYSTEM WITH HIGH-DENSITY CONFIGURATION Tuan N.A. Vo and Pin-Chuan Chen National Taiwan University of Science and Technology, TAIWAN	927
253-д	FAST PROTOTYPING OF OFF-STOICHIOMETRY THIOL-ENE (OSTE) BY AQUEOUS REPLICA MOLDING Zitao Feng, Zhiqing Xiao, Lexin Sun, Yuqian Yang, and Weijin Guo Shantou University, CHINA	931

g – Micro- and Nanofluidics

529-g	MASKLESS AND DIRECT WRITE PREPARATION METHOD OF 3D PAPER-BASED MICROFLUIDIC DEVICE BASED ON ATMOSPHERIC PRESSURE LOW TEMPERATURE PLASMA JET	935
	g – Micro- and Nanofluidics	
	Modeling of Micro & Nanofluidics	
147-g	OPTICAL FREEZE-FRAMING AND ANALYSIS OF NANOFLUIDIC BEHAVIORS IN ELASTOMERIC NANOCAVITIES Myung G. Ji, Qiang Li, and Jaeyoun (Jay) Kim Iowa State University, USA	93 9
	g – Micro- and Nanofluidics	
	Other Micro- and Nanofluidics	
332-д	ENERGY HARVESTING FROM WATER DROPLET MOTION CONFINED ON A HYDROPHOBIC-HYDROPHILIC STRIPPED SURFACE	943
	h - Optical, RF and Electromagnetics for MEMS	
	Electrical Field and Magnetic Field Sensors and Transducers	
148-h	A MEMS RESONANT LORENTZ-FORCE MAGNETOMETER WITH BOTH STRUCTURALTOPOLOGY OPTIMIZATION AND PARAMETRIC PUMPING FOR Q-FACTOR ENHANCEMENT Xiaoxiao Song ¹ , Lu Gao ¹ , Jingqian Xi ¹ , Chen Wang ² , Fangzheng Li ¹ , Lei Xu ¹ , Yuan Wang ¹ , Huafeng Liu ¹ , Chun Zhao ¹ , Shuangyang Kuang ¹ , Liang-Cheng Tu ^{1,3} , and Michael Kraft ² ¹ Huazhong University of Science and Technology, CHINA, ² University of Leuven, BELGIUM, and ³ Sun Yat-sen University, CHINA	947
530-h	NI MUSHROOM ARRAY TO ENHANCE OUT-OF-PLANE MAGNETIC FIELD SENSITIVITY OF ANISOTROPIC MAGNETORESISTANCE SENSOR	951
617-h	A NEW MINIATURE MAGNETOMETER BASED ON A QUARTZ MEMS RESONATOR AND A STACK OF MAGNETIC MATERIALS	955
	h - Optical, RF and Electromagnetics for MEMS	
	Free Space Optical Components & Systems	
255-h	RECONFIGURABLE PLASMONIC PHOTODETECTOR INTEGRATED WITH ELECTROSTATIC ACTUATOR FOR SPECTROMETRY Masaaki Oshita ¹ , Shiro Saito ² , and Tetsuo Kan ¹ **Ilmiversity of Electro-Communications** IAPAN and **IMRA IAPAN Co., ITD., IAPAN	959

333-h	RESONANT VARIFOCAL MEMS MIRROR Samed Kocer ¹ , Lyazzat Mukhangaliyeva ¹ , Resul Saritas ¹ , Ahmet Gulsaran ¹ , Alaa Elhady ¹ , Kevan Bell ¹ , Amr Kamel ¹ , Mohamed Basha ¹ , Taylan Das ² , Muhammed Kayaharman ¹ , Parsin Hajireza ¹ , Mustafa Yavuz ¹ , and Eihab Abdel-Rahman ¹ ¹ University of Waterloo, CANADA and ² Kirikkale University, TURKEY	. 963
618-h	VIA-LESS TWO-AXIS ELECTROMAGNETIC SCANNER USING AN ASYMMETRIC FRAME ON A ONE-AXIS LATERAL MAGNETIC FIELD Yuki Okamoto, Thanh-Vinh Nguyen, Hironao Okada, and Masaaki Ichiki National Institute of Advanced Industrial Science and Technology (AIST), JAPAN	. 967
	h - Optical, RF and Electromagnetics for MEMS	
	Infrared (IR) Sensors and Imaging Systems	
149-h	MM-SCALE FOCAL LENGTH TUNING IN MEMS-INTEGRATED META-OPTICS	. 971
531-h	NOVEL HIGH THERMAL RESISTANCE STRUCTURE DESIGN FOR RESPONSIVITY AND DETECTIVITY ENHANCEMENTS OF CMOS MEMS THERMOELECTRIC INFRARED SENSOR	. 975
	Yu-Cheng Huang ¹ , Pen-Sheng Lin ¹ , Yen-Lin Chen ¹ , Fuchi Shih ¹ , Chih-Fan Hu ² , and Weileun Fang ¹ ¹ National Tsing Hua University, TAIWAN and ² PixArt Imaging Inc., TAIWAN	
	h - Optical, RF and Electromagnetics for MEMS	
	Materials for Electromagnetic Transducers	
257-h	RETAINING HIGH <i>Q</i> FACTORS IN ELECTRODE-LESS ALN-ON-Si BULK MODE RESONATORS BY NON-CONTACT ELECTRICAL DRIVE S M Enamul Hoque Yousuf ¹ , Yuncong Liu ¹ , Xu-Qian Zheng ¹ , Afzaal Qamar ² , Mina Rais-Zadeh ^{2,3} , and Philip XL. Feng ¹ ¹ University of Florida, USA, ² University of Michigan, USA, and ³ California Institute of Technology, USA	. 979
	h - Optical, RF and Electromagnetics for MEMS	
	MEMS for Timing & Frequency Control	
150-h	MICRO VAPOR CELLS SEALED BY TWO-STEP BONDING FOR MINIATURE ATOMIC CLOCKS Hitoshi Nishino ¹ , Yasubumi Furuya ² , and Takahito Ono ² ¹ Tamagawa Holdings Co., Ltd., JAPAN and ² Tohoku University, JAPAN	. 983
422-h	TUNING FREQUENCY STABILITY IN MICROMECHANICAL RESONATORS WITH PARAMETRIC PUMPING Nicholas E. Bousse ¹ , James M.L. Miller ^{1,2} , Gabrielle D. Vukasin ¹ , Hyun-Keun Kwon ¹ , Steven W. Shaw ² , and Thomas W. Kenny ¹ Stanford University, USA and ² Florida Institute of Technology, USA	. 987

h - Optical, RF and Electromagnetics for MEMS Photonic Components & Systems

151-h	MULTICHANNEL SMART SLIT ASSEMBLY FOR SPECTROSCOPY BASED ON ARRAYS OF VARIABLE OPTICAL MEMS ATTENUATORS Anton Lagosh ¹ , Benedikt Guldimann ² , Philippe Giaccari ³ , Grégoire Kerr ⁴ , Takeshi Nishizawa ⁴ , Berit Ahlers ² , Peyman Rahnama ³ , and Niels Quack ¹ ¹ École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND, ² European Space Research and Technology Centre, NETHERLANDS, ³ Micos Engineering GmbH, SWITZERLAND, and ⁴ OHB System AG, GERMANY	991
258-h	A BISTABLE SILICON PHOTONIC MEMS PHASE SWITCH FOR NONVOLATILE PHOTONIC CIRCUITS Pierre Edinger ¹ , Alain Yuji Takabayashi ² , Carlos Errando-Herranz ¹ , Umar Khan ³ , Cleitus Antony ⁴ , Giuseppe Talli ⁴ , Peter Verheyen ⁵ , Wim Bogaerts ³ , Niels Quack ² , and Kristinn B. Gylfason ¹ ¹ KTH Royal Institute of Technology, SWEDEN, ² École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND, ³ Ghent University, BELGIUM, ⁴ Tyndall National Institute, IRELAND, and ⁵ IMEC, BELGIUM	995
619-h	ANGLE INDEPENDENT FULL-COLOR PHOTONIC CRYSTALS BY DIRECT LASER WRITING Shuai Wei ^{1,2} and Tiger H. Tao ^{1,2} ¹ Chinese Academy of Sciences (CAS), CHINA and ² University of Chinese Academy of Sciences, CHINA	998
620-h	CURRENT DETECTION SPR SENSOR USING DISCONTINUOUS AU GRATING FOR COMPACT CHEMICAL SENSOR Shinichi Suzuki ¹ , Ryota Kuroki ¹ , Shun Yasunaga ² , and Tetsuo Kan ¹ **IUniversity of Electro-Communications, JAPAN and **University of Tokyo, JAPAN	. 1002
	h - Optical, RF and Electromagnetics for MEMS	
	RF MEMS Components & Systems	
152-h	A 6.1 GHz WIDEBAND SOLIDLY-MOUNTED ACOUSTIC FILTER ON HETEROGENEOUS SUBSTRATE FOR 5G FRONT-ENDS Hongyan Zhou, Shibin Zhang, Pengcheng Zheng, Liping Zhang, Jinbo Wu, Hulin Yao, Tiangui You, and Xin Ou University of Chinese Academy of Sciences, CHINA	. 1006
152-h 153-h	A 6.1 GHz WIDEBAND SOLIDLY-MOUNTED ACOUSTIC FILTER ON HETEROGENEOUS SUBSTRATE FOR 5G FRONT-ENDS Hongyan Zhou, Shibin Zhang, Pengcheng Zheng, Liping Zhang, Jinbo Wu, Hulin Yao, Tiangui You, and Xin Ou	
	A 6.1 GHz WIDEBAND SOLIDLY-MOUNTED ACOUSTIC FILTER ON HETEROGENEOUS SUBSTRATE FOR 5G FRONT-ENDS Hongyan Zhou, Shibin Zhang, Pengcheng Zheng, Liping Zhang, Jinbo Wu, Hulin Yao, Tiangui You, and Xin Ou University of Chinese Academy of Sciences, CHINA ELECTROMECHANICAL COUPLING ENHANCEMENT IN A1 MODE ACOUSTIC RESONATORS WITH BI-LAYER STRUCTURE Pengcheng Zheng ^{1,2} , Shibin Zhang ^{1,2} , Jinbo Wu ^{1,2} , Hongyan Zhou ^{1,2} , Liping Zhang ^{1,2} , Hulin Yao ^{1,2} , Kai Huang ^{1,2} , Xiaomeng Zhao ^{1,2} , Tiangui You ^{1,2} , and Xin Ou ^{1,2}	1010
153-h	A 6.1 GHz WIDEBAND SOLIDLY-MOUNTED ACOUSTIC FILTER ON HETEROGENEOUS SUBSTRATE FOR 5G FRONT-ENDS Hongyan Zhou, Shibin Zhang, Pengcheng Zheng, Liping Zhang, Jinbo Wu, Hulin Yao, Tiangui You, and Xin Ou University of Chinese Academy of Sciences, CHINA ELECTROMECHANICAL COUPLING ENHANCEMENT IN A1 MODE ACOUSTIC RESONATORS WITH BI-LAYER STRUCTURE Pengcheng Zheng ^{1,2} , Shibin Zhang ^{1,2} , Jinbo Wu ^{1,2} , Hongyan Zhou ^{1,2} , Liping Zhang ^{1,2} , Hulin Yao ^{1,2} , Kai Huang ^{1,2} , Xiaomeng Zhao ^{1,2} , Tiangui You ^{1,2} , and Xin Ou ^{1,2} Chinese Academy of Sciences (CAS), CHINA and University of Chinese Academy of Sciences, CHINA ULTRA-WIDEBAND NON-RECIPROCAL MICRO-ACOUSTIC DELAY LINES WITH SLANTED-FINGER INTERDIGITAL TRANSDUCERS Hakhamanesh Mansoorzare and Reza Abdolvand	1010 1014

335-h	MONOLITHIC INTEGRATION OF RELEASED AND SOLIDLY MOUNTED RF ACOUSTIC DEVICES ON HETEROGENEOUS SUBSTRATE Jinbo Wu ^{1,2,3} , Shibin Zhang ¹ , Hongyan Zhou ^{1,2} , Liping Zhang ^{1,2} , Pengcheng Zheng ^{1,2} , Hulin Yao ^{1,2} , Xiaomeng Zhao ¹ , Kai Huang ¹ , Tao Wu ³ , and Xin Ou ^{1,2} ¹ Chinese Academy of Sciences (CAS), CHINA, ² University of Chinese Academy of Sciences, CHINA, and ³ ShanghaiTech University, CHINA	1026
336-h	ULTRA-LOW LOSS AND HIGH PHASE VELOCITY ACOUSTIC DELAY LINES IN LITHIUM NIOBATE ON SILICON CARBIDE PLATFORM	1030
423-h	DEMONSTRATION OF SUBSTRATE-EMBEDDED NONRECIPROCAL MILLIMETER WAVE CIRCULATORS FOR SYSTEM-IN-PACKAGE Hae-In Kim, Renuka Bowrothu, Woosol Lee, Connor Smith, Leili Hayati, David P. Arnold, and Yong-Kyu Yoon University of Florida, USA	1034
424-h	NON-RELEASED HIGHLY-DISPERSIVE ALUMINUM NITRIDE BULK ACOUSTIC WAVE RESONATORS Jeronimo Segovia-Fernandez and Ernest TT. Yen Texas Instruments Kilby Labs, USA	1038
532-h	5V-BIAS CMOS-MEMS CAPACITIVE RESONATOR WITH R_M < 5KΩ BASED ON METAL-INSULATOR-METAL (MIM) CAPACITOR	1042
621-h	HIGH-ORDER SEZAWA MODE ALSCN/GAN/SAPPHIRE SURFACE ACOUSTIC WAVE RESONATORS Yue Zheng ¹ , Jialin Wang ¹ , Mingyo Park ¹ , Ping Wang ² , Ding Wang ² , Zetian Mi ² , and Azadeh Ansari ¹ Georgia Institute of Technology, USA and ² University of Michigan, Ann Arbor, USA	1046
622-h	INTRINSICALLY TUNABLE LAMINATED FERROELECTRIC SCANDIUM ALUMINUM NITRIDE EXTENSIONAL RESONATOR BASED ON LOCAL POLARIZATION SWITCHING Shaurya Dabas, Dicheng Mo, Sushant Rassay, and Roozbeh Tabrizian University of Florida, USA	1050
	h - Optical, RF and Electromagnetics for MEMS	
	THz MEMS Components & Systems	
533-h	A DUAL-BAND TERAHERTZ FOCAL PLANE ARRAY FOR MATERIAL COMPOSITION IDENTIFICATION BY SPECTRAL IMAGING Jia Xu, Jiahao Miao and Yi Liu, and Xiaomei Yu Peking University, CHINA	1054