Deep Foundations 2002

An International Perspective on Theory, Design, Construction and Performance

Proceedings of the International Deep Foundations Congress 2002

Geotechnical Special Publication Number 116

Orlando, Florida, USA 14 – 16 February 2002

Part 1 of 2

Editors:

Michael W. O'Neill Frank C. Townsend

ISBN: 978-1-7138-5217-9

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2002) by American Society of Civil Engineers All rights reserved.

Printed with permission by Curran Associates, Inc. (2022)

For permission requests, please contact American Society of Civil Engineers at the address below.

American Society of Civil Engineers 1801 Alexander Bell Drive Reston, VA 20191 USA

Phone: (800) 548-2723 Fax: (703) 295-6333

www.asce.org

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2633 Email: curran@proceedings.com Web: www.proceedings.com

Contents

Observations on Some Shortcomings in Foundation Analysis and Design1 Fred H. Kulhawy
The Use of Superposition for Evaluating Pile Capacity
Drained Elastic Behavior of Drilled Shafts in Cohesionless Soils
Long-Term Strength of Prestressed Ground Anchors in Creep-Sensitive Soils
Bearing Capacity and Settlement of Vertically-Loaded Piles53 Stanislav Škrabl
A Conceptual Model of Pile Set-Up for Driven Piles in Non-Cohesive Soil
Analysis of Laterally Loaded Piles in a Two-Layered Elastic Medium
Lateral Load Testing Program for the Cooper River Bridge, Charleston, SC95 Dan Brown and William M. Camp
I and Disale compared Deletion shine for Microwillon 110
Load Displacement Relationships for Micropiles
Load Displacement Relationships for Microphes
Anil Misra and CH. Chen Influence of Subsoil Characteristics on Embedment Depths and Load Capacity of Large Diameter Pipe Piles
Anil Misra and CH. Chen Influence of Subsoil Characteristics on Embedment Depths and Load Capacity of Large Diameter Pipe Piles
Anil Misra and CH. Chen Influence of Subsoil Characteristics on Embedment Depths and Load Capacity of Large Diameter Pipe Piles

Some Experience in the Execution, Quality Assurance (QA) and Quality Control (QC) of Deep Foundations in Weak Rock in Slovenia
Modeling of Friction Piles in Consolidating Soils
Retaining Structure Effect on Piled Raft Foundation Performance
Optimum Design of Three-Dimensional Pile Groups in Nonlinear Soil
A Laterally Loaded Pile Database
A Numerical Model for Seismic Analysis of Piles in Liquefying Soil
A Numerical Analysis for Axial and Lateral Behavior of Instrumented
Steel Pipe Piles
Lateral Load-Deflection Modeling of Group Pile Using Artificial Neural
Networks
The Temporary Use of Drilled Shafts in the Renovation of Carnegie Hall
Pressure Grouting Drilled Shaft Tips: Full-Scale Research Investigation for Silty
and Shelly Sands
Bottom Driving Casing Technique Predictions with TNOWAVE
Press-In Piling: Ground Vibration and Noise During Pile Installation
Use of Bouc-Wen Model for Seismic Analysis of Concrete Piles
Maximum Scour Depth Around a Bridge Pier in Sand and in Clay: Are They Equal?
JL. Briaud, F.C.K. Ting, H.C. Chen, S.R. Gudavalli, and K. Kwak
Dynamic Coupled Analysis for Earthquake Response of Pile Foundations
Some Remarks on the Optimum Design of Piled Rafts
Innovative Application of Piled Raft Foundation in Stiff and Soft Subsoil

Simplified Design Procedure for Piled Raft Foundations
Field Investigations for Nine-Kilometers Long Highway Tunnel at 3,000 m Elevation Under Adverse Conditions in Himalayas-India
The Collapse of Foundations in Khon Kaen Soil and the Rehabilitation by Means of Composite Piles
Quality Control of Caisson Foundations
Case History: Pile Driving and Vibration Monitoring for Avenue P Bridge in Brooklyn, New York
The Use of a Subsurface Drilled Pier/Tieback Wall for Landslide Abatement in a Suburban Residential Setting—A Case Study
Settlement Performance of Large Diameter Friction Caissons in Bouldery Clay525 Chu Eu Ho
Measured and Predicted Capacity of H-Piles
Ground Improvement by Jet Grout Columns for the Foundations of an Automobile Plant in Turkey
Case History: The Collapse of Closed-End Pipe Piles—The Problem and Solution570 Emad Farouz and Kyle Ott
Case Histories of Problems with Timber Piles
Pile Driving in Coral Deposits: A Case Study Along the Red Sea
Pile Dynamics in Geotechnical Practice—Six Case Histories
High Capacity Piles in Very Dense Sands
Underpinning a 3000-Ton Structure with High-Capacity Mini-Piles
High Capacity Pipe Piles at San Francisco International Airport
Use of Geogrid-Reinforced and Pile-Supported Earth Structures
An Innovative Value Engineering Cost Proposal (VECP) on the Central Artery/Tunnel Project

Prediction of Soil Movements Due to Diaphragm Wall Construction
Soil-Cement-Bentonite Slurry Walls
Performance of a Drilled Shaft Retaining Wall and Abutment in Hawaii
High Capacity Micropiles in Karst: Challenges and Opportunities743 R.P. Traylor, A.W. Cadden, and D.A. Bruce
Design and Installation of Steel Open End Piles in Weathered Basalt760 Luc Maertens
Foundation Design and Construction over a Waste Filled Limestone Quarry
Pullout Behaviors for Battered Large Diameter Reaction Piles During Static Pile Load Tests for Large Diameter Piles
O-Cell Test Results for Drilled Shafts in Marl and Limestone
Lateral Load Test Results on Drilled Shafts in Marl at Jacksonville, Florida
Single-Tube Ultrasonic Testing of Pile Integrity

Dynamic Load Testing of Drilled Shafts at National Geotechnical Experimentation Sites
Dynamic Methods in Pile Testing: Developments in Measurement and Analysis
Non-Destructive Evaluation of Drilled Shafts at the Amherst National Geotechnical Experimentation Site (NGES) Test Section
Engineering Judgement in Determination of Pile Capacity by Dynamic Methods898 Mark R. Svinkin
Advancements in Statnamic Data Regression: Techniques

Evaluation of Driven Pile Load Capacity Using Cone Penetration Test (CPT) Based LCPC and European Interpretation Methods
Resistance Factors for Driven Piling Developed from Load-Test Databases
Reliability Analysis of Pile Groups: Two Case Studies
The Technical Expert Averaging Method (T.E.A.M.) Approach in Geotechnical Engineering
Use of Load Tests for Reducing Pile Length
Drilled Shaft Design for Transmission Structures Using Load and Resistance Factor Design (LRFD) and Multiple Resistance Factor Design (MRFD)1006 Kok-Kwang Phoon and Fred H. Kulhawy
On the Interpretation of Drilled Foundation Load Test Results
Proven Success for Driven Pile Foundations
Load Transfer Characteristics of Micropiles in Dolomite
Alternate Verification Methods for Augercast Piles
Proposed Overhaul of Deep Foundation Provisions of the International Building Code
Barrette of Over 50,000 kN Ultimate Capacity Constructed in the Multi-Layered Soil of Bangkok
Full-Scale Loading Tests on Instrumented Continuous Flight Auger (CFA) Piles 1088 Alessandro Mandolini, Massimo Ramondini, Gianpiero Russo, and Carlo Viggiani
The Application of Deep Foundations to Mitigate Ground Vibration for a Train-Supporting Viaduct Structure in Soft Ground Area1098 Yi-Jiun Shen
Analysis and Design of Pile Foundation of Cruise Terminal
Capacity Analysis of Drilled Shafts with Defects
Flexural Behavior of Drilled Shafts with Minor Flaws

Deep Foundations 2002

xvi

Recommendations for Choice of Coefficients in Pile Bearing Capacity
Evaluation of Design Methods for Auger Cast Piles in Mixed Soil Conditions1404 David M. Coleman and Brad J. Arcement
Seismic Foundation Stiffness for Bridges1421 Zia Zafir
Effect of Construction Procedures on the Performance of Bored Piles
Determining the True Distributions of Load in Instrumented Piles
Selection of Driven Pile Design Parameters for the I-15 Reconstruction Project1471 William G. Turner and William J. Attwooll
Interface Shear Tests on Fiber Reinforced Polymer (FRP) Composite Piles
An Assessment of Design Methods for Driven Piles in Sands
Drilled Shaft Axial Design Values: Predicted Versus Measured Response in a Calcareous Clay
Compression Top Load Reaching Shaft Bottom—Theory Versus Tests
A Unified Design Equation for Cylindrical Drilled Shafts in Compression1550 Koon Meng Chua and Robert Meyers
Subject Index

Author Index