3rd ACF/HNU International Conference on UHPC Materials and Structures (UHPC'2020-China)

RILEM Proceedings Pro 134

Nanjing, China 29 October – 1 November 2020

Editors:

Jiaping Liu Caijun Shi

ISBN: 978-1-7138-5751-8

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2020) by RILEM Publications All rights reserved.

Printed with permission by Curran Associates, Inc. (2022)

For permission requests, please contact RILEM Publications at the address below.

RILEM Publications 4 avenue du Recteur Poincare 75016 Paris France

Phone: +33 1 42 24 64 46 Fax: +33 9 70 29 51 20

dg@rilem.net

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: 845-758-0400 Fax: 845-758-2633

Email: curran@proceedings.com Web: www.proceedings.com

CONTENTS

PREFACE

I Microstructure and Mixture Design	
1. Influence of fine aggregates on the properties of ultra-high performance concrete Xueyang Ji, Binbin Li, kai Liu, Xiaopeng Kang	2
2. How to design low carbon footprint ultra-high performance concrete (UHPC) R. Yu, D.Q. Fan, Z.H. Shui, Q.L. Song, X.P. Wang	9
3. A novel design approach of UHPC by implanting steel fibres into particle dense packing model Dingqiang Fan, Rui Yu, Zhonghe Shui	21
4. Estimation of the reaction degree of silica fume in cement-silica fume binary UHPC pastes Hao Pan, Wei She, Jianzhong Liu, Jiaping Liu	34
5. Study on the compound proportion of early strength agents for non- steam curing concrete Peng Zhao, Lei Qin, Lizhi Zhou	43
6. Feasibility analysis on application of mixed waste glass as aggregate in the design of ultra-high performance concrete (UHPC) Rui Zhong, Jingquan Wang, Yuqing Hu	50
7. Microstructure and micro-zone compositions of interfacial transition zone between steel fiber and cement matrix Zhenyu Pi, Huigang Xiao, Xianzhang Dong, Rui Liu, Hui Li	56
II Rheological Properties and Volume Stability	
8. The influence of rheological properties on the layer deformation in extrusion and deposition of 3d printed mortar Zifan Geng, Zhuoheng Bao, and Zhicong Deng	66
9. Influence on the workability and rheological properties of ultra-high performance concrete (UHPC) by ultrafine clay Zhenchuan Liu, Tao Zhu, Shengjun Ban, Jianhu Lang, Xiaobo Zheng	75

10. Evaluating decrement of water flux from crack self-closure in concrete Sailong Hou, Caijun Shi, Kai Li, Zemei Wu	85
11. Internal curing of superabsorbent polymer (SAP) in ultra-high strength concrete with cement-silica fume-slag binder Jianhui Liu, Caijun Shi	95
12. Autogenous shrinkage of UHPC with SRPCA Guo Yang, Hao Wang, Disheng Xu, Zhangli Hu, Jiaping Liu	105
13. Effect of Nano-Tio2 on the properties of white UHPC R. Ma, W. Zhang, A.G. Wang, D.S. Sun	112
14. Effects of superabsorbent polymer combined with expansive agent on shrinkage of ultra-high performance concrete ChenYang, Wang Wenbin, Zheng Xiaobo, Liu Jianzhong, Liu Jiaping	119
15. Effect of micro- and nano-particle on rheological properties of cement- based materials with low water-binder ratio Xin Zheng, Jianzhong Liu, Juyu Xi, Xiaobo Zheng, Xinwen Zhou, Fangyu Han	127
III Fiber Reinforcement and Mechanical Properties	
16. Mechanical performance and environmental assessment of ultra-high performance concrete with recycled sand H. Chu, J. Qin, L. Gao, F. Wang, J. Tang, J. Jiang	137
17. Effect of curing temperature on the mechanical property and hydration of UHPC Wen Yang, Yaoling Luo, Yuxin Gao, Yuhao Xie, Xinyi Yan	145
18. Prediction of elastic modulus of ultra-high performance concrete Xue Ouyang, Caijun Shi, Zemei Wu	156
19. Study of damage of ultra-high performance concrete under load- temperature coupling action XIA Xizhi, LIU Zhiyong	163
20. Experimental study on the effects of steel fiber to UHPC compressive strength J. YANG, B.C. CHEN, C. LI, Q. W. HUANG	177
21. The influence of fiber orientation on flexural behavior of steel fiber reinforced cementitious composites Wei Luansu, She Wei, Mu Ru, Xing Peng	185

22. Characteristics of ductility enhancement of concrete by a macro polypropylene Zhu Hongbo, Zhou Haiyun, Gou Hongxiang	192
23. Experimental research on basic mechanical properties of ultra-high performance concrete mixed with fiber LI Fuhai, JIANG YiLin, TANG Huiqi, WEN Tao, FENG Li, GAO Hao, CHEN Zhao	205
24. Effect of steel fiber addition on ultra high performance concrete flexural toughness Zhu Congxiang, Xu Jun, Ge Chen	211
25. Effect of hybrid steel fiber on the static mechanical properties of eco- friendly UHPC containing aeolian sand Liguo Wang, Taotao Feng, Lanxin Wang, Fengjuan Wang, Jinyang Jiang	218
26. Effects of hybrid steel fiber content and proportion on fresh and mechanical properties of UHPC Mingliang Zhao, Xinwen Zhou, Fangyu Han, Jin Lv, Jianzhong Liu	225
IV Behaviors of Elements and Structures	
27. Static and fatigue equi-biaxial flexural behavior of R-UHPFRC thin slab-like elements Xiujiang Shen, Eugen Brühwiler, Xudong Shao	238
28. Numerical analysis on torsional capacities of prestressed ultra-high performance concrete rectangular beams Y. S. LI, J. Z. SU, B. C. CHEN	249
29. Research review of precast structure connected by UHPC material XIONG Xueyu, HE Linyi, ZHANG Yifang, BAO Lianjin, DONG Zhen	257
30. Effect of concrete strength on the shear performance of UHPC deep beam J. ZHOU, B. CHEN, J. SU	264
31. Bond behavior of GFRP bars in ECC with short embedded length L.F. Zhang, Y. Zheng, S.W. Hu	273
V New Structures and Specification	
32. Experimental study on performance of UHPC columns reinforced with CFRP and steel bars subjected to cyclic lateral load Rui Hu, Zhi Fang, Wenchang Fang	279

33. Experimental study on flexural behaviors of segmental PU-RC composite box girders Y. C. CHEN, J. Z. SU, Z. H. CHEN, F. Z. GUO, B. C. CHEN	286
34. Experimental Study on Performance of Lap-Spliced CFRP Bars in UHPC Jiaxing Chen, Zhi Fang, Xiao Chen	294
35. Experimental and numerical study on a new precast UHPC beam- column joint Ziyu Zhang, Ran Ding, Jiansheng Fan	302
36. Research and application for a steel deck pavement maintenance with hybrid fiber reinforced lightweight aggregate concrete and shear studs Jun Fu, Qingjun Ding, Zheshi Wang, Dawei Jia	310
37. Technical requirements for core concrete material of the UHSC-filled steel tube L. Li, B.C. Chen, J.P. Liu, J.G. Wei, W. Huang	318
VI Casting Performance and Application	
38. Comparative studies of the effect of ultra-high performance concrete and normal concrete as repair materials on bond strength S. Feng, H. Xiao, H. Li	332
39. Performance of a steel bridge deck pavement structure with ultra-high performance concrete based on resin bonding Hui Zhang, Peiwei Gao, Lei Cui, Youqiang Pan, Kuan Li	344
40. Factors affecting bond between old and new ultra high performance concrete (UHPC) K. W. Lu, Y. M. Yao, M. D. Wang, J. Q. Wang	357
41. Effect of cement type and casting technology on frost resistance of runways concrete in deicing solution Longxin Gao, Yong Lai, Yingchen Zhang, Huigui Zhang, Wuman Zhang	365
42. Experimental study on vibration protocols of prefabricated coarse aggregate UHPC pavement Canhui Zhao, Kangkang Wang, Kailai Deng, Bing Cui	373