2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS 2022)

Los Angeles, California, USA 30 May - 1 June 2022

IEEE Catalog Number: CFP22DCO-POD ISBN:

978-1-6654-9513-4

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP22DCO-POD

 ISBN (Print-On-Demand):
 978-1-6654-9513-4

 ISBN (Online):
 978-1-6654-9512-7

ISSN: 2325-2936

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: (845) 758-0400 Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS)

DCOSS 2022

Table of Contents

Message from the DCOSS 2022 General Chair and Program Chairs	
Message from the DCOSS 2022 Workshop Chairs	
Message from the IoTI4 2022 Workshop Chairs	
Message from the Wi-DroIT 2022 Workshop Chairs	
Message from the UrbCom 2022 Workshop Chairs	
Message from the WCNEE 2022 Workshop Chairs	
Message from the Chairs of the Joint Workshop on Emerging Topics in Sensor Systems	
Message from the TEPN 2022 Workshop Chairs	
Organizing Committee	
Steering Committee	
Technical Program Committee	xxv
Main Event Papers	
Session 1: Networking & Testbeds	
eAFH: Informed Exploration for Adaptive Frequency Hopping in Bluetooth Low Energy Valentin Poirot (Kiel University, Germany; Chalmers University of Technology, Sweden) and Olaf Landsiedel (Kiel University, Germany; Chalmers University of Technology, Sweden)	1
Grace: Low-Cost Time-Synchronized GPIO Tracing for IoT Testbeds	9
Technology, Sweden), Christian Richter (Kiel University, Germany), and	
Olaf Landsiedel (Kiel University, Germany; Chalmers University of	
Technology, Sweden)	
Smart-Hop: Low-Latency Multi-hop Networking for LoRa Absar Ul Haque Ahmar (KU Leuven, Belgium), Wouter Joosen (KU Leuven, Belgium), and Danny Hughes (KU Leuven, Belgium)	17
A Virtual Sink-Based Strategy for Reducing the Funneling Effect in IEEE 802.15.4 DSME	
Networks	21
Ivonne Andrea Mantilla González (Institute of Telematics, Hamburg	
University of Technology, Germany) and Volker Turau (Institute of	
Telematics, Hamburg University of Technology, Germany)	
Townwite, Thinton's amortony of Technology, Germany,	

Session 2: Human-centered sensing

End-to-end Gesture Recognition Framework for the Identification of Allergic Rhinitis	25
Symptoms Pantelis Tzamalis (University of Patras, Greece; Computer Technology Institute and Press "Diophantus" (CTI), Greece), Andreas Bardoutsos (University of Patras, Greece; Computer Technology Institute and Press "Diophantus" (CTI), Greece), Dimitris Markantonatos (University of Patras, Greece; Computer Technology Institute and Press "Diophantus" (CTI), Greece), Christoforos Raptopoulos (University of Patras, Greece; Computer Technology Institute and Press "Diophantus" (CTI), Greece), Sotiris Nikoletseas (University of Patras, Greece; Computer Technology Institute and Press "Diophantus" (CTI), Greece), Xenophon Aggelides (University of Athens, Greece), and Nikos Papadopoulos (University of Athens, Greece; University of Manchester, UK)	23
Semi-Supervised Multi-source Domain Adaptation in Wearable Activity Recognition	. 35
Real-Time Human Pose Estimation at the Edge for Gait Analysis at a Distance Enrico Martini (University of Verona, Italy), Michele Boldo (University of Verona, Italy), Stefano Aldegheri (University of Verona, Italy), Mirco De Marchi (University of Verona, Italy), Nicola Valé (University of Verona, Italy), Mirko Filippetti (University of Verona, Italy), Nicola Smania (University of Verona, Italy), Matteo Bertucco (University of Verona, Italy), Alessandro Picelli (University of Verona, Italy), and Nicola Bombieri (University of Verona, Italy)	. 45
SELF-CARE: Selective Fusion with Context-Aware Low-Power Edge Computing for Stress	. 49
Nafiul Rashid (University of California, Irvine, USA), Trier Mortlock (University of California, Irvine, USA), and Mohammad Abdullah Al Faruque (University of California, Irvine, USA)	. 49
Session 3: Data aggregation and privacy	
Publishing Asynchronous Event Times with Pufferfish Privacy	53
Trade off Between Accuracy and Message Complexity for Approximate Data Aggregation	61
Low-Power Distinct Sum for Wireless Sensor Networks	65

Posters & Demos

An IoT-Based Framework for Low-Cost and Light-Weight Vehicle Detection	69
(POSTER) A Software-Defined Underwater Visible Light Communication Testbed	72
Demo: BCG Measurement by Differential Sensing in Real-Time	75
Divide, Conquer and Merge for Internet-of-Things	79
(POSTER) SmartTwins: Secure and Auditable DLT-Based Digital Twins for the WoT	82
Session 4: Sensing, crowdsourcing, and localization	
Session 4: Sensing, crowdsourcing, and localization A Differential BCG Sensor System for Long Term Health Monitoring Experiment on the ISS Ulf Kulau (Hamburg University of Technology, Germany), Jochen Rust (DSI Aerospace Technologie GmbH, Germany), Daniel Szafranski (TU Braunschweig, Germany), Martin Drobczyk (German Aerospace Center (DLR), Germany), and Urs-Vito Albrecht (Medical Faculty OWL, Bielefeld University, Germany)	S 85
A Differential BCG Sensor System for Long Term Health Monitoring Experiment on the ISS Ulf Kulau (Hamburg University of Technology, Germany), Jochen Rust (DSI Aerospace Technologie GmbH, Germany), Daniel Szafranski (TU Braunschweig, Germany), Martin Drobczyk (German Aerospace Center (DLR), Germany), and Urs-Vito Albrecht (Medical Faculty OWL, Bielefeld	

Session 5: Application-oriented data processing

Cost-Aware Inference of Bovine Respiratory Disease in Calves Using Precision Livestock Technology	109
Drone-Based Optimal and Heuristic Orienteering Algorithms Towards Bug Detection in Orchards	117
FrameHopper: Selective Processing of Video Frames in Detection-Driven Real-Time Video Analytics Md Adnan Arefeen (University of Missouri Kansas City, USA), Sumaiya Tabassum Nimi (University of Missouri Kansas City, USA), and Md Yusuf Sarwar Uddin (University of Missouri Kansas City, USA)	125
Session 6: Machine learning Hardware-Aware Partitioning of Convolutional Neural Network Inference for Embedded AI Applications Fabian Kreß (Karlsruhe Institute of Technology, Germany), Julian Hoefer (Karlsruhe Institute of Technology, Germany), Tim Hotfilter (Karlsruhe Institute of Technology, Germany), Iris Walter (Karlsruhe Institute of Technology, Germany), Vladimir Sidorenko (Karlsruhe Institute of Technology, Germany), Tanja Harbaum (Karlsruhe Institute of Technology, Germany), and Jürgen Becker (Karlsruhe Institute of Technology, Germany)	133
Efficient Localness Transformer for Smart Sensor-Based Energy Disaggregation	141
Taking ROCKET on an Efficiency Mission: Multivariate Time Series Classification with LightWaveS	149

Workshop Papers

IoTI4 - 4th International Workshop on IoT Applications and Industry 4.0

Towards Industry 5.0 and Digital Circular Economy: Current Research and Application Trends 15 Konstantinos Voulgaridis (International Hellenic University, Greece), Thomas Lagkas (International Hellenic University, Greece), and Panagiotis Sarigiannidis (University of Western Macedonia, Greece)	53
IoT Benefits for Livestock Farmers	59
Data-Driven Soft Sensing Towards Quality Monitoring of Industrial Pasteurization Processes 16 Gabriel Filios (University of Patras, Greece; Computer Technology Institute and Press "Diophantus", Greece), Andreas Kyriakopoulos (Heineken, Patras Plant, Greece), Stavros Livanios (University of Patras, Greece), Fotis Manolopoulos (Heineken, Patras Plant, Greece), Sotiris Nikoletseas (University of Patras, Greece; Computer Technology Institute and Press "Diophantus", Greece), Stefanos H. Panagiotou (University of Patras, Greece), and Paul Spirakis (University of Liverpool, UK)	67
Detecting the Arrival of an Update at Mostly Sleeping Cyber-Physical IoT Nodes	75
Attacking and Defending DNP3 ICS/SCADA Systems	83
Active Connectivity Fundamentals for TSCH Networks of Mobile Robots	91
Design and Deployment Experiences of a Versatile Industrial WSN and Testbed	99
Utilizing Carriers for the Energy Node Placement Algorithm in WSNs and IoT Networks) 7

AI Driven IoT Web-Based Application for Automatic Segmentation and Reconstruction of Abdominal Organs from Medical Images
Modelling Virtual Sensors for Indoor Environments with Machine Learning
WiDroit - 4th International Workshop on Wireless Sensors and Drones in Internet of Things
UavSim: An Open-Source Simulator for Multiple UAV Path Planning
Modeling Sub-Team Formations for Heterogeneous Multi-robot Systems Using Colored Petri-Net Semantics
Uhura: A Software Framework for Swarm Management in Multi-radio Robotic Networks
3D Object Detection for Aerial Platforms via Edge Computing: An Experimental Evaluation
Heterogeneous Ground-Air Autonomous Vehicle Networking in Austere Environments: Practical Implementation of a Mesh Network in the DARPA Subterranean Challenge
OptiMaP: Swarm-Powered Optimized 3D Mapping Pipeline for Emergency Response Operations 269 Leandro R. Costa (Polytechnique Montreal, Canada), Daniel Aloise (Polytechnique Montreal, Canada), Luca G. Gianoli (Humanitas, Canada), and Andrea Lodi (Polytechnique Montreal, Canada)

GADAN: Generative Adversarial Domain Adaptation Network for Debris Detection U	Jsing Drone 277
Masud Ahmed (University Of Maryland Baltimore County, USA), Naima Khan	
(University Of Maryland Baltimore County, USA), Pretom Roy Ovi	
(University Of Maryland Baltimore County, USA), Nirmalya Roy	
(University Of Maryland Baltimore County, USA), Sanjay Purushotham	
(University Of Maryland Baltimore County, USA), Aryya Gangopadhyay	
(University Of Maryland Baltimore County, USA), and Suya You (DEVCOM	
Army Research Laboratory, USA)	

UrbCom - 4th International Workshop on Urban Computing

Mechanism for Optimizing Resource Allocation in VANETs Based on the PSO Bio-Inspired Algorithm	283
Douglas D. Lieira (Sao Paulo State University (UNESP), Brazil; IFSP Catanduva, Brazil), Matheus S. Quessada (Sao Paulo State University (UNESP), Brazil; IFSP Catanduva, Brazil), André L. Cristiani (Federal University of Sao Carlos (UFSCar), Brazil), Robson E. De Grande (Brock University (BrockU), Canada), and Rodolfo I. Meneguette (University of Sao Paulo (USP), Brazil)	
Keeping Information Alive: Hovering Information and Floating Content Paradigms for Vehicular Networks	291
Lachlan Johnston (Ontario Tech University, Canada) and Richard W. Pazzi (Ontario Tech University, Canada)	
Towards Bat Bio-Inspired Decision-Making for Task Allocation in Vehicular Fogs	298
Cross-Cultural Study of a Location-Based Social Network Incentive Mechanism	306
Analysis of Pandemic Atmosphere Pollution Data Using Virtual Sensors in São Paulo City Gabriel Oliveira Campos (University of Campinas (UNICAMP), Brazil), Leandro Aparecido Villas (University of Campinas (UNICAMP), Brazil), and Felipe Domingos da Cunha (Pontificial Catholic University of Minas Gerais (PUC-MG), Brazil)	314

WCNEE - 6th IEEE International Workshop on Wireless Communications and Networking in Extreme Environments

A Middleware for Digital Twin-Enabled Flying Network Simulations Using UBSim and UB-ANC . 322 Sabarish Krishna Moorthy (University at Buffalo, USA), Ankush Harindranath (University at Buffalo, USA), Maxwell McManus (University at Buffalo, USA), Zhangyu Guan (University at Buffalo, USA), Nicholas Mastronarde (University at Buffalo, USA), Elizabeth Serena Bentley (Air Force Research Laboratory (AFRL), USA), and Michael Medley (Air Force Research Laboratory (AFRL), USA)

Intelligent Cross-Layer Routing Framework Based on D* Lite for Resilient Aerial Networks 328 Talip Tolga Sarı (Istanbul Technical University, Turkey) and Gökhan Seçinti (Istanbul Technical University, Turkey)
SynchroSim: An Integrated Co-Simulation Middleware for Heterogeneous Multi-robot System 334 Emon Dey (University of Maryland, Baltimore County, USA), Jumman Hossain (University of Maryland, Baltimore County, USA), Nirmalya Roy (University of Maryland, Baltimore County, USA), and Carl Busart (DEVCOM Army Research Lab, USA)
Digital Twin Driven Blockchain Based Reliable and Efficient 6G Edge Network
GSpace Communications Lab: Reaching New Heights
Multi-Physics Analysis of Electromagnetic Wave Propagation and Photothermal Heating in Human Tissues at Terahertz and Optical Frequencies
RSS-Based Localization Using A Single Robot in Complex Environments
Emerging Topics in Sensor Systems (Joint event of the REFRESH, SmaCE, MS-SWIN and C19STD Workshops
GNN-Based End-to-End Delay Prediction in Software Defined Networking
Network Economics-Enabled Edge Computing in UAV-Assisted Public Safety Systems

Trading in Collaborative Mobile Edge Computing Networks: A Contract Theory-Based Auction Model
Symeon Papavassiliou (National Technical University of Athens, Greece)
Elaborating on Sub-Space Modeling as an Enrollment Solution for Strong PUF
AI Powered COVID-19 Detection System Using Non-Contact Sensing Technology and Deep Learning Techniques
Understanding the United States' 50 Most Populous Counties' COVID-19 Healthcare Outcomes Through Multiple Regression Across the Delta Variant and Omicron Variant Times of Dominance 404
Alexander Bruckhaus (University of Southern California, USA), Yujia Zhang (University of Southern California, USA), Aidin Abedi (University of Southern California, USA), Sana Salehi (University of Southern California, USA), and Dominique Duncan (University of Southern California, USA)
A Lightweight Depthwise Separable Convolution Neural Network for Screening Covid-19 Infection from Chest CT and X-ray Images
ABSTRACT: COVID-19 Vaccination Dynamics in the US: A Follow-up Study
ABSTRACT: Evaluation of Transfer Learning Models on Detection of COVID-19 Using Multi-modal Data
TEPN - International Workshop on Test and Evaluation of Programmable Networks
Prototyping a Fine-Grained QoS Framework for 5G and NextG Networks Using POWDER

UHD-DPDK Performance Analysis for Advanced Software Radio Communications	20
Enabling P4 Hands-on Training in an Academic Cloud	26
Software Radio with MATLAB Toolbox for 5G NR Waveform Generation	30
Work in Progress Paper: Experiment Planning for Heterogeneous Programmable Networks 43 Nik Sultana (Illinois Tech, USA)	34
Author Index	39