Proceedings of ASME 2022 41st International Conference on Ocean, Offshore & Arctic Engineering

(OMAE2022)

Volume 8

June 5-10, 2022 Hamburg, Germany

Conference Sponsor Ocean, Offshore and Arctic Engineering Division

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS

Two Park Avenue * New York, N.Y. 10016

© 2022, The American Society of Mechanical Engineers, 2 Park Avenue, New York, NY 10016, USA (www.asme.org)

All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

INFORMATION CONTAINED IN THIS WORK HAS BEEN OBTAINED BY THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS FROM SOURCES BELIEVED TO BE RELIABLE. HOWEVER, NEITHER ASME NOR ITS AUTHORS OR EDITORS GUARANTEE THE ACCURACY OR COMPLETENESS OF ANY INFORMATION PUBLISHED IN THIS WORK. NEITHER ASME NOR ITS AUTHORS AND EDITORS SHALL BE RESPONSIBLE FOR ANY ERRORS, OMISSIONS, OR DAMAGES ARISING OUT OF THE USE OF THIS INFORMATION. THE WORK IS PUBLISHED WITH THE UNDERSTANDING THAT ASME AND ITS AUTHORS AND EDITORS ARE SUPPLYING INFORMATION BUT ARE NOT ATTEMPTING TO RENDER ENGINEERING OR OTHER PROFESSIONAL SERVICES. IF SUCH ENGINEERING OR PROFESSIONAL SERVICES ARE REQUIRED, THE ASSISTANCE OF AN APPROPRIATE PROFESSIONAL SHOULD BE SOUGHT.

ASME shall not be responsible for statements or opinions advanced in papers or . . . printed in its publications (B7.1.3). Statement from the Bylaws.

For authorization to photocopy material for internal or personal use under those circumstances not falling within the fair use provisions of the Copyright Act, contact the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923, tel: 978-750-8400, www.copyright.com.

Requests for special permission or bulk reproduction should be addressed to the ASME Publishing Department, or submitted online at: https://www.asme.org/publications-submissions/journals/information-for-authors/journalguidelines/rights-and-permissions

ISBN: 978-0-7918-8593-2

CONTENTS

Proceedings of ASME 2022 41st International Conference on Ocean, Offshore & Arctic Engineering OMAE2022 Volume 8

OCEAN RENEWABLE ENERGY

Current and Tidal Energy	
OMAE2022-78417. The Relationship Between Reliability and Environmental Impact in Tidal Stream Turbine Deployments <i>Stuart Walker, Philipp Thies, and Lars Johanning</i>	V008T09A001
OMAE2022-79114. Fatigue Life Evaluation of a Tidal Turbine Blade: From Simulations Using BEMT/FEM and CFD/FEM Couplings to Full-Scale Test Stéphane Paboeuf, Meryem Guisser, Sébastien Loubeyre, Peter Davies, Maël Arhant, Nicolas Dumergue, and Erwann Nicolas	V008T09A002
OMAE2022-79348. Joint Extremes of Waves and Currents at Tidal Energy Sites in the English Channel Ed B. L. Mackay and Jon P. Hardwick	V008T09A003
OMAE2022-80245. Flow-Induced Vibration Marine Current Energy Harvesting Using a Centrally-Pivoted Cylinder Brad Stannanholt	V008T09A004
OMAE2022-80276. Hydrodynamic Performance of a Vertical-Axis Tidal Current Turbine in Surge Motion Using a 2-D Vortex Panel Model Federica Perassi, Antonio Jarquin Laguna, and Carlos Simao Ferreira	V008T09A005
OMAE2022-81006. Control Co-Design of a Hydrokinetic Turbine With Open-Loop Optimal Control <i>Boxi Jiang, Mohammad Reza Amini, Yingqian Liao, Joaquim R. R. A. Martins, and</i> <i>Jing Sun</i>	V008T09A006
OMAE2022-81210 . Power Production From a Hydrokinetic Device: Mass of Water Turbine <i>Azin Lamei, Masoud Hayatdavoodi, and Stuart Moir</i>	V008T09A007
Hybrids and Floating Solar Energy	
OMAE2022-78762. Wind Parameters Effects on Floating Solar Array Design – Case Study: Japan's Largest Floating Solar Array <i>Amir Honaryar, Madjid Karimirad, Arash Abbasnia, and Trevor Whittaker</i>	V008T09A008
OMAE2022-79728. The Development of a Time-Domain BEM to Investigate Dynamics of a Floating Solar Platform in Nonlinear Wave Regimes <i>Arash Abbasnia, Madjid Karimirad, Gautam Baruah, and Trevor Whittaker</i>	V008T09A009
OMAE2022-79732. Numerical Simulation of Nonlinear Wave Interaction With Floating Solar Platforms With Double Tubular Floaters Using Viscous Flow Model <i>Gautam Baruah, Madjid Karimirad, Arash Abbasnia, Pauline MacKinnon, Nabin</i> <i>Sarmah, and Abdolmajid Moghtadaei</i>	V008T09A010

Hydrogen and Energy Storage

OMAE2022-78138 . Investigating the Increase in Energy Storage Density of Subsea Hydro-Pneumatic Accumulators Using a Compressible Fluid Undergoing Phase Change <i>Charise Cutajar, Tonio Sant, Luke J. Briffa, and Daniel Buhagiar</i>	V008T09A011
OMAE2022-80422. Subsea Buoyancy and Gravity Energy Storage System for Deep-Water Applications: A Preliminary Assessment <i>Andre R. Novgorodcev, Jr., Frank Mols, and Antonio Jarquin Laguna</i>	V008T09A012
Offshore Wind Energy	
OMAE2022-78095 Tow Out Calculations for Floating Wind Turbines <i>A. P. Crowle and P. R. Thies</i>	V008T09A013
OMAE2022-78288. Wake Interaction Between Two Floating Offshore Wind Turbines With Blade Deformation	V008T09A014
A Review of End-of-Life Decision Making for Offshore Wind Turbines David Boyd, Madjid Karimirad, Vinayagamoothy Sivakumar, Soroosh Jalilvand, and Cian Desmond	V000103A013
OMAE2022-78552 . Effect of Protuberances at the Blade Trailing Edge of a Vertical Axis Wind Turbine <i>M. Somoano and F. J. Huera-Huarte</i>	V008T09A016
OMAE2022-78666. Analysis of a Hybrid Mooring System Concept for a Semi-Submersible Wind Turbine in Intermediate Water Depth Under Operational, Extreme, and Yaw Error Conditions <i>Qun Cao, Erin E. Bachynski-Polić, Zhen Gao, Longfei Xiao, Zhengshun Cheng,</i> <i>and Mingyue Liu</i>	V008T09A017
OMAE2022-78673. The Application of Semi-Analytical Diffraction Formulas to Predict Second-Order Dynamic Response of a TLP Floating Wind Turbine in Monochromatic Waves <i>Elie Ronge, Christophe Peyrard, Vengatesan Venugopal, Qing Xiao, and Lars</i> <i>Johanning</i>	V008T09A018
OMAE2022-78715. Impact of Rotor Solidity on the Design Optimization of Floating Vertical Axis Wind Turbines	V008T09A019
OMAE2022 79909	V0097004020
Conceptual Design of a Prestressed Concrete Spar Floater Supporting a 10 MW Offshore Wind Turbine <i>Wichuda Munbua, Muhammad S. Hasan, Edgard B. Malta, Rodolfo T. Gonçalves,</i> <i>Chikako Fujiyama, and Koichi Maekawa</i>	V008109A020
OMAE2022-78816. Conceptual Design of a Concrete Multi-Column Floating Platform Supporting a 10 MW Offshore Wind Turbine <i>Muhammad S. Hasan, Wichuda Munbua, Edgard B. Malta, Rodolfo T. Gonçalves,</i> <i>Chikako Fujiyama, and Koichi Maekawa</i>	V008T09A021
OMAE2022-78877. LQR Optimal Control of Two-Rotor Wind Turbine Mounted on Spar-Type Floating Platform Omar El Beshbichi, Yihan Xing, and Muk Chen Ong	V008T09A022

OMAE2022-78929 . Influence of Aerodynamic Loads on a Dual-Spar Floating Offshore Wind Farm With a Shared Line in Parked Conditions <i>Guodong Liang, Zhiyu Jiang, and Karl Merz</i>	V008T09A023
OMAE2022-78985. On the Real Time Hybrid Modelling of Floating Offshore Wind Turbine Using Ducted Fan(s) <i>Alexandre Cinello, François Pétrié, Benjamin Rousse, and Cédric Le Cunff</i>	V008T09A024
OMAE2022-79006 . Simulation of VIM of an Offshore Floating Wind Turbine <i>Elizabeth Passano, Guttorm Grytøyr, Herbjørn Haslum, Halvor Lie, and Decao Yin</i>	V008T09A025
OMAE2022-79081 . A Three Degrees of Freedom Vibration Model for a Partially Installed Wind Turbine <i>Andreas F. Haselsteiner, Aljoscha Sander, and Klaus-Dieter Thoben</i>	V008T09A026
OMAE2022-79109. Interaction of Offshore Support Vessel With Adjacent Offshore Wind Turbine During Maintenance Operation <i>Xiudi Ren, Longbin Tao, Martin Nuernberg, and Iman Ramzanpoor</i>	V008T09A027
OMAE2022-79124 . Influence of the Semi-Submersible Platform Flexibility on the Dynamic Response of the Wind Turbine <i>Sofya Sizova, Elise Maillot, Suzanne Moreau, and Marie Féron</i>	V008T09A028
OMAE2022-79155. FRyFAST : A Coupling Between FRyDoM and OpenFAST for the Simulation of Floating Offshore Wind Turbines With High Complexity Platforms <i>Camille Chauvigné, Lucas Letournel, François Rongère, Pierre-Yves Wuillaume,</i> <i>Natalia Castro Casas, Benjamin Maréchal, and Sofien Kerkeni</i>	V008T09A029
OMAE2022-79203. A Statistical Model of Motion Maxima of Offshore Wind Turbine Components During Installation Lena Ströer, Andreas F. Haselsteiner, Aljoscha Sander, and Klaus-Dieter Thoben	V008T09A030
OMAE2022-79230. Modelling Aerodynamics of a Floating Offshore Wind Turbine Using the Overset Mesh Solver In OpenFOAM Zaibin Lin, Ling Qian, Michele Sergio Campobasso, Wei Bai, Yang Zhou, and Zhihua Ma	V008T09A031
OMAE2022-79248. Hydrodynamic Performance of an Innovative Semisubmersible Platform With Twin Wind Turbines <i>Mujahid Elobeid, Longbin Tao, David Ingram, Ajit C. Pillai, Pedro Mayorga, and</i> <i>Jan Erik Hanssen</i>	V008T09A032
OMAE2022-79265 . Probabilistic Assessment of the Effect of Bolt Pre-Load Loss Over Time in Offshore Wind Turbine Bolted Ring-Flanges Using a Gaussian Process Surrogate Model Jack Jorgensen, Melinda Hodkiewicz, Edward Cripps, and Ghulam Mubashar Hassan	V008T09A033
OMAE2022-79283. Offshore Wind Power Construction Efficiency Assessment in Fujian Sea Area Based on the Mixed Integer Linear Programming	V008T09A034

Zihao Yang, Yifan Lin, and Sheng Dong

OMAE2022-79302. Fatigue Analysis of Wind Turbine Blade Coating Considering Uncertainty Due to Voids Subjected to Impact Fatigue <i>Nikesh Kuthe, Suhail Ahmad, and Puneet Mahajan</i>	V008T09A035
OMAE2022-79407 . Investigating the Impact of Disruptive Events on the Fabrication and Installation Processes for a Floating Offshore Wind Farm Zohreh Sarichloo, Adrian Murphy, Joseph Butterfield, John Doran, Paddy Hannigan, and Cian Desmond	V008T09A036
OMAE2022-79432. Development of 12MW Cross-Shaped Semi-Submersible Floating Offshore Wind Turbine Ryo Matsuoka, Takashi Takeda, Hiroki Kusumoto, Shu Kuwada, Haruki Yoshimoto, and Ken Kamizawa	V008T09A037
OMAE2022-79483 . Power Performance and Response Analysis of a Semi-Submersible Wind Turbine With Combined Flap Type and Torus Wave Energy Converters <i>Chern Fong Lee, Christodoulos Tryfonidis, and Muk Chen Ong</i>	V008T09A038
OMAE2022-79515. A Study of Offshore Wind Turbine Wake Effects in Yaw Conditions Using an Improved Actuator Line Method <i>Ning Fan, Kangping Liao, and Qian Wang</i>	V008T09A039
OMAE2022-79598. Sustainable Reuse of Decommissioned Jacket Platforms for Offshore Wind Energy Accounting for Accumulated Fatigue Damage <i>Taemin Heo, Ding Peng Liu, Lance Manuel, Jose A. F. O. Correia, and Paulo</i> <i>Mendes</i>	V008T09A040
OMAE2022-79698 . Transferability of Meta-Model Configurations for Different Wind Turbine Types <i>Franziska Müller, Clemens Hübler, and Raimund Rolfes</i>	V008T09A041
OMAE2022-79735. Platform Motion Forecast of Hywind Floating Offshore Wind Turbine Based on SADA Method and Full-Scale Measurement Data <i>Peng Chen and Zhiqiang Hu</i>	V008T09A042
OMAE2022-79827 . Assessment of the Power Obtained by a Multi Wind Turbine Floating Platform <i>Raquel Martín-San-Román, José Azcona-Armendáriz, Mikel Iribas-Latour, and</i> <i>Alvaro Cuerva-Tejero</i>	V008T09A043
OMAE2022-79834. Experimental Analysis of Mooring and Power Cable Dynamics When Using Elastic String Models <i>M. Somoano, D. Blanco, A. Rodríguez-Luis, and R. Guanche</i>	V008T09A044
OMAE2022-79844. FMI-Based Co-Simulation of Low-Height Lifting System for Offshore Wind Turbine Installation <i>Shuai Yuan, Behfar Ataei, Karl Henning Halse, Houxiang Zhang, and Hans Petter</i> <i>Hildre</i>	V008T09A045
OMAE2022-79855. Double Braid Mooring Damper for Floating Offshore Wind Application <i>Faryal Khalid, Philipp R. Thies, Peter Halswell, David Newsam, and</i> <i>Lars Johanning</i>	V008T09A046

OMAE2022-79879. The Effects of Hydrodynamic and Aerodynamic Loads on the Low Frequency Responses of Floating Offshore Wind Turbines <i>Edward Land, Will Brindley, and Zhiqiang Hu</i>	V008T09A047
OMAE2022-79916. Development of a Modular, Adaptable and Scalable Gravity Anchor System for Various Floating Foundations <i>Imanol Flores Ganuza, Johannes Wahrendorf, Eva Hlawatsch, Frank Adam, and</i> <i>Jochen Großmann</i>	V008T09A048
OMAE2022-80071. Suspended Power Cable Configurations for Floating Offshore Wind Turbines in Deep Water Powering an FPSO <i>Anja Schnepf, Carlos Lopez-Pavon, Aymeric Devulder, Øyvind Johnsen, and</i> <i>Muk Chen Ong</i>	V008T09A049
OMAE2022-80344 . Experimental Study of the Effect of Heave Plate Dimensions on the Flow-Induced Motions (FIM) of a Multi-Column Floating Offshore Wind Turbine (FOWT) <i>Rodolfo T. Gonçalves, Edgard B. Malta, Alexandre N. Simos, Shinichiro Hirabayashi,</i> <i>and Hideyuki Suzuki</i>	V008T09A050
OMAE2022-80493. Dynamic Analysis of an Integrated Structure Consists of Jacket Offshore Wind Turbine and Aquaculture Cage <i>Na Li, Haisheng Zhao, Wei Shi, Wenhua Wang, and Xin Li</i>	V008T09A051
OMAE2022-80585. Dynamic Response Analysis of a Novel Semi-Submersible Floating Offshore Wind Turbine Based on Different Mooring System Designs <i>Zhixin Zhao, Wenhua Wang, Wei Shi, Xin Li, and Bin Wang</i>	V008T09A052
OMAE2022-80593. Mooring System Design for Floating Offshore Wind Turbine Working in Intermediate Water Zhen He, Zhenju Chuang, Chunzheng Li, and Aobo Zhang	V008T09A053
OMAE2022-80701. Dynamic Analysis of Blade Mating Process Using Jack-Up Crane Vessel: A Code-to- Code Comparison Saravanan Bhaskaran, Amrit Shankar Verma, Shuai Yuan, and Karl Henning Halse	V008T09A054
OMAE2022-80883. Structural Load Estimation of Downstream Wind Turbines in an Offshore Wind Farm Yiqing Xia, Yosuke Matsumoto, Iman Yousefi, Kazuyoshi Oouchi, Shunsuke Kaneko, Michio Nittouji, Kenji Fujii, and Kaho Machida	V008T09A055
OMAE2022-80926 . A Comparison of Approaches for Modelling Walk-to-Work Gangway Access Ben Moverley Smith, Ben Middleditch, and Philipp Thies	V008T09A056
OMAE2022-80930. Offshore Wind Turbine Support Structures Along Indian Coast - Multi Criteria Analysis <i>Mounika Mallela, Nilanjan Saha, Satya Kiran Raju Alluri, and M. V. Ramana</i> <i>Murthy</i>	V008T09A057
OMAE2022-80933. A Perspective of Decommissioning Methods for Bottom-Fixed Offshore Wind Turbines	V008T09A058

Soheil Salahshour, Muk Chen Ong, Bjørn Skaare, and Zhiyu Jiang

OMAE2022-81065. V008T09A Model Test and Validation of the Crown Floating Offshore Wind Turbine Wei Yu, Frank Lemmer, Katja Lehmann, Po Wen Cheng, Santiago de Guzmán, Jaime Moreu, and Tommaso Battistella	.059
OMAE2022-81116. V008T09A Validation Study of a CFD Numerical Solver for the Oscillatory Flow Features Around Heave Plates Seung-yoon Han, Benjamin Bouscasse, Jean-Christophe Gilloteaux, and David Le Touzé	.060
OMAE2022-81245. V008T09A Preliminary Investigation of a Shared Mooring Arrangement for a Floating Offshore Wind Turbine Farm in Deep Water <i>Yutao Wang, Hugh Wolgamot, Phillip Watson, Christophe Gaudin, Wenhua Zhao,</i> <i>and Ian Milne</i>	.061
OMAE2022-81290. Experimental and Numerical Investigation on the Dynamic Response of Platform for a Spar-Type Floating Wind Turbine Under Aerodynamic and Hydrodynamic Forces <i>Baoxuan Wang, Xu Liang, and Xue Jiang</i>	.062
OMAE2022-81467. V008T09A Identification of Wave Drift Forces on a Floating Wind Turbine Sub-Structure With Heave Plates and Comparison With Predictions <i>Nuno Fonseca, Synne Nybø, José Miguel Rodrigues, Aitor Gallego, and Carlos</i> <i>Garrido</i>	.063
OMAE2022-81555. V008T09A Design Methodology Evolution: Transition From O&G FPU to FOWT Shaosong Zhang, Daewoong Son, and Antoine Peiffer	.064
OMAE2022-86751. V008T09A Optimization of Semi-Submersible Hull Design for Floating Offshore Wind Turbines <i>I-Jen Hsu, Glib Ivanov, Kai-Tung Ma, Zheng-Zhang Huang, Hua-Tung Wu,</i> <i>Yun-Tzu Huang, and Mike Chou</i>	.065
Wave Energy	
OMAE2022-78191. V008T09A A Novel Zero-Discharge Supercritical Water-Based Wave Energy Desalination System	.066
Faete Filho, Gabriel Glosson, Jason McMorris, Tarek Abdel-Salam, Kurabachew Duba, Thanh Toan Tran, and Salman Husain	
OMAE2022-79119	.067
OMAE2022-79674. V008T09A Environmental Extreme Conditions for a Wave Energy Converter: An Integrated Wave-Structure Approach Saghy Saeidtehrani, George Lavidas, and Andrei Metrikine	068
OMAE2022-79869. V008T09A Performance Modelling of Flap-Type Wave Energy Converter Array: Flaps With Various Dynamic Characteristics Saghy Saeidtehrani and George Lavidas	.069
OMAE2022-79897. V008T09A Wave Record Gap-Filling Using a Low-Rank Tensor Completion Model Jiaxin Chen, Ian G. C. Ashton, and Ajit C. Pillai	070

OMAE2022-80110. V008T09A07 The Influence of Different Configurations and Spacings on the Performance of Oscillating Wave Surge Converters When Operating in Wave Farms Daniela Benites-Munoz, Giles Thomas, and Luofeng Huang	1
OMAE2022-80578. V008T09A07 Comprehensive Verification and Validation of a CFD Analysis <i>Tiago Amaral, Manuel Rentschler, Guilherme Vaz, and João Baltazar</i>	2
OMAE2022-80731	3
OMAE2022-80867	4
OMAE2022-80885. V008T09A07 Wave-by-Wave Prediction in Narrowly Spread Seas Using Fixed- and Drifting-Point Wave Records: Validation Using Physical Measurements Thobani Hlophe, Hugh Wolgamot, Paul H. Taylor, Adi Kurniawan, Jana Orszaghova, and Scott Draper	5
OMAE2022-80972. V008T09A07 Nonlinear Model Predictive Control Based on Real-Time Iteration Scheme for Wave Energy Converters Using WEC-Sim Juan Luis Guerrero-Fernández, Nathan Michael Tom, and John Anthony Rossiter	6
OMAE2022-80986. V008T09A07 Experimental Investigation on a Speed Controlled Wells Turbine for Wave Energy Conversion F. Licheri, P. Puddu, F. Cambuli, and T. Ghisu	7
OMAE2022-80990. V008T09A07 Energy-Maximising Control Philosophy for a Cyclorotor Wave Energy Device John V. Ringwood and Andrei Ermakov	8
OMAE2022-81070. V008T09A07 Three-Dimensional Simulations for Geometric Optimization of a Shoreline Hybrid Wave Energy Converter Theofano Koutrouveli and Luciana Das Neves	9
OMAE2022-81138. V008T09A08 Stochastic Response Determination of U-Oscillating Water Columns in Severe Seas by a Statistical Linearization Scheme Andrea Scialò, Giovanni Malara, Ioannis A. Kougioumtzoglou, and Felice Arena	0
OMAE2022-81155. V008T09A08 Accurate WEC Power Estimation for Multi-Modal Wave Spectra <i>Kourosh Parsa, Mark Kim, and Neil Williams</i>	1
OMAE2022-81267. V008T09A08 Nonlinear Moment-Based Optimal Control of Wave Energy Converters With Non-Ideal Power Take-Off Systems Nicolás Faedo, Giuseppe Giorgi, John V. Ringwood, and Giuliana Mattiazzo	2
OMAE2022-81361. V008T09A08 Input-Unknown Estimation for Arrays of Wave Energy Conversion Systems via LTI Synthesis Guglielmo Papini, Edoardo Pasta, Bruno Paduano, Nicolás Faedo, and Giuliana Mattiazzo	3

OMAE2022-81447. V008 Solutions to Wave Damping Over Time in CFD RANS Simulations Due to Exponential Generation of Numerical Turbulence <i>Pietro Casalone, Oronzo dell'Edera, Marco Fontana, Giuliana Mattiazzo, and</i> <i>Beatrice Battisti</i>	F09A084
OMAE2022-81464. V008 Wave Energy Converter Optimal Design Under Parameter Uncertainty Filippo Giorcelli, Sergej Antonello Sirigu, Edoardo Pasta, Daniele Giovanni Gioia, Mauro Bonfanti, and Giuliana Mattiazzo	F09A085
OMAE2022-81470. V008 A Combined Nonlinear Mooring-Line and Umbilical Cable Dynamics Model and Application Solomon C. Yim, Ming Chen, and Shangmao Ai	F09A086
OMAE2022-81518. V008 Influence on Structural Loading of a Wave Energy Converter by Controlling Variable- Geometry Components and the Power Take-Off Salman Husain, Jacob Davis, Nathan Tom, Krish Thiagarajan, Cole Burge, and Nhu Nguyen	F09A087
OMAE2022-81530. V0081 Design and Optimization of a Point Absorber for the Mediterranean Sea Alberto Ghigo, Sergej Antonello Sirigu, Fabio Carapellese, and Giovanni Bracco	F09A088
OMAE2022-82707. V0081 Mitigating Force Oscillations in a Wave Energy Converter Using Control Barrier Functions Functions Mathias Marley and Roger Skjetne	F09A089