Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition

(GT2022)

Volume 2

June 13-17, 2022 Rotterdam, The Netherlands

> Conference Sponsor International Gas Turbine Institute

Two Park Avenue * New York, N.Y. 10016

© 2022, The American Society of Mechanical Engineers, 2 Park Avenue, New York, NY 10016, USA (www.asme.org)

All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

INFORMATION CONTAINED IN THIS WORK HAS BEEN OBTAINED BY THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS FROM SOURCES BELIEVED TO BE RELIABLE. HOWEVER, NEITHER ASME NOR ITS AUTHORS OR EDITORS GUARANTEE THE ACCURACY OR COMPLETENESS OF ANY INFORMATION PUBLISHED IN THIS WORK. NEITHER ASME NOR ITS AUTHORS AND EDITORS SHALL BE RESPONSIBLE FOR ANY ERRORS, OMISSIONS, OR DAMAGES ARISING OUT OF THE USE OF THIS INFORMATION. THE WORK IS PUBLISHED WITH THE UNDERSTANDING THAT ASME AND ITS AUTHORS AND EDITORS ARE SUPPLYING INFORMATION BUT ARE NOT ATTEMPTING TO RENDER ENGINEERING OR OTHER PROFESSIONAL SERVICES. IF SUCH ENGINEERING OR PROFESSIONAL SERVICES ARE REQUIRED, THE ASSISTANCE OF AN APPROPRIATE PROFESSIONAL SHOULD BE SOUGHT.

ASME shall not be responsible for statements or opinions advanced in papers or . . . printed in its publications (B7.1.3). Statement from the Bylaws.

For authorization to photocopy material for internal or personal use under those circumstances not falling within the fair use provisions of the Copyright Act, contact the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923, tel: 978-750-8400, www.copyright.com.

Requests for special permission or bulk reproduction should be addressed to the ASME Publishing Department, or submitted online at: https://www.asme.org/publications-submissions/journals/information-for-authors/journalguidelines/rights-and-permissions

ISBN: 978-0-7918-8598-7

CONTENTS

Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition Volume 2

Coal, Biomass, Hydrogen, and Alternative Fuels	
GT2022-77981	1
GT2022-78256	2
GT2022-80430	3
GT2022-80733	4
GT2022-80865	5
GT2022-80886	6
GT2022-80924	7
GT2022-81004	8
GT2022-81131. V002T03A009 Analysis of the NOx Emissions Deriving From Hydrogen/Air Combustion in a Swirling Non-Premixed Annular Micro-Combustor Luca Mazzotta, Francesca Di Gruttola, Orlando Palone, Gabriele Guglielmo Gagliardi, and Domenico Borello	9

GT2022-82154	
GT2022-82282	.011
GT2022-82583	.012
GT2022-82683	.013
GT2022-82711	.014
GT2022-82937	.015
GT2022-83029	.016
GT2022-83053	.017
GT2022-83097	.018
GT2022-83166	.019
GT2022-83250	.020
GT2022-83379	.021

GT2022-84236 A Method to Describe the Alignment Between Renewable Power Supply and Demand in Order to Derive Storage Needs Arnd Reichert	. V002T03A022
GT2022-84359	. V002T03A023
Controls, Diagnostics, and Instrumentation	
GT2022-80650 Estimation of Dynamical Thermoacoustic Modes Using an Output Only Observer Kalman Filter-Based Identification (O³KID) Algorithm Nikhil Balasubramanian, Driek Rouwenhorst, and Jakob Hermann	. V002T05A001
GT2022-80777	. V002T05A002
GT2022-80968 Design and Commissioning of the Constant Condition Dynamic Test Rig Robert Pearce, Michael Tombs, and Zahid Hussain	. V002T05A003
GT2022-81124	. V002T05A004
GT2022-81271 Particle Image Velocimetry in a High-Speed Short-Duration Turbine Rig Mizuki Okada, Jorge Pinho, Bogdan Cernat, and Sergio Lavagnoli	. V002T05A005
GT2022-81310	. V002T05A006
GT2022-81686	. V002T05A007
GT2022-81744	. V002T05A008
GT2022-81965	. V002T05A009
GT2022-82037	. V002T05A010
GT2022-82219 Method of Analysis for Impact of Input Uncertainty Error Propagation in a Highly Nonlinear System: Applied to Modern Aircraft Engine Timothy Castaldo	. V002T05A011

GT2022-82344 Development of a Test Article for Acoustic Streaming in High-Speed Flow Iman Rahbari, Michael Butzen, James Twaddle, and Guillermo Paniagua	. V002T05A012
GT2022-82377	. V002T05A013
GT2022-82406	. V002T05A014
GT2022-82549	. V002T05A015
GT2022-82644	. V002T05A016
GT2022-82750	. V002T05A017
GT2022-82873	. V002T05A018
GT2022-83001	. V002T05A019
GT2022-83076	. V002T05A020
GT2022-83152	. V002T05A021
GT2022-83233	. V002T05A022
GT2022-83418	. V002T05A023
GT2022-83550	. V002T05A024
GT2022-83600 Bearing Diagnostics Using Kurtosis Spectral Correlation Based on Cyclic Modulation Spectrum Estimation Alexandre Mauricio and Konstantinos Gryllias	. V002T05A025

Steam Turbine

GT2022-78258	. V002T20A001
GT2022-78969 Pressure Losses Analysis in Two High-Pressure Steam Turbine Control Valves Situated in One Valve Chamber Vaclav Slama, Bartolomej Rudas, David Simurda, Jindrich Hala, and Martin Luxa	. V002T20A002
GT2022-79398	. V002T20A003
GT2022-80191 Experimental and Numerical Investigations of the Non-Equilibrium Condensation on the Performance and the Flow Pattern in Steam Turbine Soichiro Tabata, Kiyoshi Segawa, Tadashi Takahashi, and Jin Aoyagi	V002T20A004
GT2022-80368	. V002T20A005
GT2022-80523 Analysis of Turbulent Effects in a Low-Pressure Model Steam Turbine Operating Under Various Operating Conditions Using Detached Eddy Simulation Ilgit Ercan and Damian M. Vogt	. V002T20A006
GT2022-80688	. V002T20A007
GT2022-80950	V002T20A008
GT2022-81246	V002T20A009
GT2022-81891 Experimental and Numerical Assessment of Liquid Film Thickness Under High-Speed Gas Flow Takayuki Okui, Shunsuke Mizumi, Soichiro Tabata, Yuki Mizushima, and Toshiyuki Sanada	. V002T20A010
GT2022-81921 Numerical Investigation of Potential Flow Induced Vibrations of Steam Turbine Last Stage Rotor at Low Load Operation - Part 2: Rotating Instabilities Detection Tommaso Diurno, Antonio Andreini, Bruno Facchini, Nicola Maceli, and Lorenzo Arcengeli	. V002T20A011
GT2022-82389 Thermal Bowing of Steam Turbine Shafts: Prediction Methods and Field Data Matching Rama Raju Vegesna, Damaso Checcacci, and Gabriele Girezzi	V002T20A012

GT2022-82405 Numerical Investigation of Potential Flow Induced Vibrations of Steam Turbine Last Stage Rotor at Low Load Operation – Part 1: Sensitivity to Flutter Occurrence Lorenzo Pinelli, Filippo Mariotti, Andrea Arnone, Michele Marconcini, Lorenzo Arcangeli, Lorenzo Ciuchicchi, and Nicola Maceli	V002T20A013
GT2022-82896	V002T20A014
Lorenzo Arcangeli, and Lorenzo Cosi	