Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition

(GT2022)

Volume 5

June 13-17, 2022 Rotterdam, The Netherlands

> **Conference Sponsor** International Gas Turbine Institute

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS

Two Park Avenue * New York, N.Y. 10016

© 2022, The American Society of Mechanical Engineers, 2 Park Avenue, New York, NY 10016, USA (www.asme.org)

All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

INFORMATION CONTAINED IN THIS WORK HAS BEEN OBTAINED BY THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS FROM SOURCES BELIEVED TO BE RELIABLE. HOWEVER, NEITHER ASME NOR ITS AUTHORS OR EDITORS GUARANTEE THE ACCURACY OR COMPLETENESS OF ANY INFORMATION PUBLISHED IN THIS WORK. NEITHER ASME NOR ITS AUTHORS AND EDITORS SHALL BE RESPONSIBLE FOR ANY ERRORS, OMISSIONS, OR DAMAGES ARISING OUT OF THE USE OF THIS INFORMATION. THE WORK IS PUBLISHED WITH THE UNDERSTANDING THAT ASME AND ITS AUTHORS AND EDITORS ARE SUPPLYING INFORMATION BUT ARE NOT ATTEMPTING TO RENDER ENGINEERING OR OTHER PROFESSIONAL SERVICES. IF SUCH ENGINEERING OR PROFESSIONAL SERVICES ARE REQUIRED, THE ASSISTANCE OF AN APPROPRIATE PROFESSIONAL SHOULD BE SOUGHT.

ASME shall not be responsible for statements or opinions advanced in papers or . . . printed in its publications (B7.1.3). Statement from the Bylaws.

For authorization to photocopy material for internal or personal use under those circumstances not falling within the fair use provisions of the Copyright Act, contact the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923, tel: 978-750-8400, www.copyright.com.

Requests for special permission or bulk reproduction should be addressed to the ASME Publishing Department, or submitted online at: https://www.asme.org/publications-submissions/journals/information-for-authors/journalguidelines/rights-and-permissions

ISBN: 978-0-7918-8602-1

CONTENTS

Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition Volume 5

Education	
GT2022-79397 Virtual Centrifugal Pump Test Rig for Laboratory Classes Based on IoT Technology Harald Roclawski, Laura Sterle, and Martin Böhle	V005T08A001
GT2022-81021 Undergraduate Hypersonics Research: Lessons From Two Years of the REU Site HYPER Jeffrey L. Kauffman and Ali P. Gordon	V005T08A002
GT2022-81558 An Alternate Means to Form Non-Dimensional Products in Dimensional Analysis John P. Clark	V005T08A003
GT2022-82041 A MATLAB Based Set of Functions for Finding Thermodynamic Properties and Solving Gas Turbine and Other Thermodynamics Problems <i>Ralph J. Volino</i>	V005T08A004
GT2022-82814 Interactive Learning Platform for the Preliminary Design of Axial Turbines and Its Use for Graduate Courses <i>George Patton de Oliveira Silva, Jesuino Takachi Tomita, Cleverson Bringhenti,</i>	V005T08A005
GT2022-83102 Energy and the University: The Role of Gas Turbines at US Universities and Strategies for Enhancing Energy Literacy <i>Erica Winegardner, Emma Lemay, Stephen Lynch, Karen A. Thole, and Jacqueline</i> O'Connor	V005T08A006
GT2022-84535 Pioneering Turbomachinery Education with Multi-Platform App for Blading Design <i>Michail D. Tsinoglou, Dionysis S. Chala, and Anestis I. Kalfas</i>	V005T08A007
Electric Power	
GT2022-80406 Power and Hydrogen Co-Production in Flexible "Powdrogen" Plants Alessandro de Cataldo, Marco Astolfi, Paolo Chiesa, Stefano Campanari, Emanuele Martelli, Paolo Silva, Stefano Bedogni, Luca Ottolina, Marco Tappani, and Matteo C. Romano	V005T09A001
GT2022-81802 Gas Turbine's Role in Energy Transition S. Can Gülen and Martin Curtis	V005T09A002
GT2022-81807 Feasibility of Achieving 62% Combined Cycle Efficiency With a 200 MW Gas Turbine S. Can (John) Gulen and Justin Zachary	V005T09A003
GT2022-82146 Root Cause Analysis of the Lack of Market Success of Micro Gas Turbine Systems <i>Giuseppe Tilocca, D. Sánchez, and M. Torres García</i>	V005T09A004

GT2022-82667 Dry Low NOx (DLN) Combustion System Operability Considerations Leonard Angello, Bobby Noble, Rob Steele, Mitch Cohen, and Benjamin Emerson	V005T09A005
GT2022-82698 Combined Cycle, Heat Pump, and Thermal Storage Integration: Techno-Economic Sensitivity to Market and Climatic Conditions Based on a European and United States Assessment <i>Alberto Vannoni, Jose Angel Garcia, Rafael Guedez, Alessandro Sorce, and</i> <i>Aristide Fausto Massardo</i>	V005T09A006
GT2022-82701 Improving Gas Turbine Maintenance Quality Leonard Angello, John Scheibel, David Noble, and Nick Smith	V005T09A007
GT2022-82718 Using Engineering Enhanced AI to Forecast Combined Cycle Power Plant Performance in the Presence of Uncertain Weather Conditions <i>Christopher A. Perullo, Lea Boche, Alex Redling, Jamie Lim, Woosung Choi,</i> <i>Timothy C. Lieuwen, and David Noble</i>	V005T09A008
GT2022-83026 A Proven Engine Optimizer for the Aeroderivative Industry: Challenges and Solutions Nicolas Demougeot, Franklin van den Hout, Danny Grobbe, and Wenping Wang	V005T09A009
GT2022-83085 Gas Turbine Monitoring Solutions Assessment and Roadmaps Benjamin Emerson, David Wu, Leonard Angello, and David R. Noble	V005T09A010
GT2022-83437 Techno-Economic Dispatch Analysis of a Case Study Consisting of Micro Gas Turbines Using Real-Time Data Hasan Huseyin Uslu, Andrea Vinci, Matteo Saviozzi, Gabriele Mosaico, Mohsen Assadi, Federico Silvestro, and Homam Nikpey Somehsaraei	V005T09A011
Fans and Blowers	
GT2022-78066 Numerical Investigation of an Automotive Axial Fan: A Comparison Among Different CFD Software Packages and Experimental Validation <i>Nicola Aldi, Nicola Casari, Stefano Oliani, Michele Pinelli, Enrico Mollica, and</i> <i>Filippo Menichini</i>	V005T10A001
GT2022-78406 Influence of Different Flow Solvers and Off-Design Conditions on the Determination of Fan-Rotor Wakes for Broadband Noise Prediction <i>Robert Meier zu Ummeln, Antoine Moreau, and Markus Schnoes</i>	V005T10A002
GT2022-79389 Assessment of the Impeller/Volute Relationship of Centrifugal Fans From an Aerodynamic and Aeroacoustic Perspective <i>Till M. Biedermann, Youssef Moutamassik, and Frank Kameier</i>	V005T10A003
GT2022-80190 A Comprehensive Analytical Model for Vortex Shedding From Low-Speed Axial Fan Blades	V005T10A004
GT2022-80256 Design of an Axial Flow Fan for a Unique Cooling Application <i>Francois D. Boshoff, Sybrand J. van der Spuy, Johannes P. Pretorius, and</i> <i>Christiaan J. Meyer</i>	V005T10A005

GT2022-80525)A006
GT2022-81697)A007
GT2022-82116. V005T10 Machine-Learning Clustering Methods Applied to Detection of Noise Sources in Low- Speed Axial Fan Lorenzo Tieghi, Stefan Becker, Alessandro Corsini, Giovanni Delibra, Stefan Schoder, and Felix Czwielong)A008
GT2022-82232)A009
GT2022-82245)A010
GT2022-82283	JA011
GT2022-82294)A012
GT2022-82862)A013
GT2022-82953)A014
GT2022-82957)A015
GT2022-82962	JA016
GT2022-82966	JA017