Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition

(GT2022)

Volume 6B

June 13-17, 2022 Rotterdam, The Netherlands

> **Conference Sponsor** International Gas Turbine Institute

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS

Two Park Avenue * New York, N.Y. 10016

© 2022, The American Society of Mechanical Engineers, 2 Park Avenue, New York, NY 10016, USA (www.asme.org)

All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

INFORMATION CONTAINED IN THIS WORK HAS BEEN OBTAINED BY THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS FROM SOURCES BELIEVED TO BE RELIABLE. HOWEVER, NEITHER ASME NOR ITS AUTHORS OR EDITORS GUARANTEE THE ACCURACY OR COMPLETENESS OF ANY INFORMATION PUBLISHED IN THIS WORK. NEITHER ASME NOR ITS AUTHORS AND EDITORS SHALL BE RESPONSIBLE FOR ANY ERRORS, OMISSIONS, OR DAMAGES ARISING OUT OF THE USE OF THIS INFORMATION. THE WORK IS PUBLISHED WITH THE UNDERSTANDING THAT ASME AND ITS AUTHORS AND EDITORS ARE SUPPLYING INFORMATION BUT ARE NOT ATTEMPTING TO RENDER ENGINEERING OR OTHER PROFESSIONAL SERVICES. IF SUCH ENGINEERING OR PROFESSIONAL SERVICES ARE REQUIRED, THE ASSISTANCE OF AN APPROPRIATE PROFESSIONAL SHOULD BE SOUGHT.

ASME shall not be responsible for statements or opinions advanced in papers or . . . printed in its publications (B7.1.3). Statement from the Bylaws.

For authorization to photocopy material for internal or personal use under those circumstances not falling within the fair use provisions of the Copyright Act, contact the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923, tel: 978-750-8400, www.copyright.com.

Requests for special permission or bulk reproduction should be addressed to the ASME Publishing Department, or submitted online at: https://www.asme.org/publications-submissions/journals/information-for-authors/journalguidelines/rights-and-permissions

ISBN: 978-0-7918-8604-5

CONTENTS

Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition Volume 6B

Heat Transfer: General Interest/Additive Manufacturing Impacts on Heat Transfer

GT2022-78271	13A001
GT2022-78272	13A002
GT2022-78273	13A003
GT2022-79547	13A004
GT2022-79662	13A005
GT2022-80946	13A006
GT2022-81263	13A007
GT2022-81569	13A008
GT2022-81788	13A009

Jose M. Chaquet, Carlos Perez, and Jaime Quintanal

GT2022-82132 Additively Manufactured Guide Vane With Integral Measurement System for Validation on Engine <i>Oleg Naryzhnyy, Martin Lindbaeck, Petr Laletin, and Alexander Rotar</i>	V06BT13A010
GT2022-82353 Large Eddy Simulation on the Turbulent Heat Transfer of Supercritical Fluid <i>Junqiang Zhang and Zhengping Zou</i>	V06BT13A011
GT2022-82391 Calibration of a CFD Methodology for the Simulation of Additively Manufactured Components Accounting for the Effects of Diameter and Printing Direction on Friction and Heat Transfer <i>Lorenzo Mazzei, Riccardo Da Soghe, and Cosimo Bianchini</i>	V06BT13A012
GT2022-82538 Thermal Management for Electrification in Aircraft Engines: Optimization of Coolant System <i>N. Raske, O. Ausin Gonzalez, S. Furino, M. Pietropaoli, S. Shahpar, and</i> <i>F. Montomoli</i>	V06BT13A013
GT2022-82552 Axial Ventilation and Blade Row Effects on Transient Natural Convective Shutdown Cooling in a Gas Turbine Daniel D. Fahy and Peter Ireland	V06BT13A014
GT2022-82573 Development of a Transient Test Facility for Evaluating the Aerothermodynamic Performance of Gas Turbine Cascades <i>Bo Bai, Yuanyuan Li, Zhigang Li, and Jun Li</i>	V06BT13A015
GT2022-82851 Analysis of Melting and Solidification Behavior in DED Laser Welding of Inconel 901 <i>Ehtesham Ali, Hwabhin Kwon, Je-Hyun Lee, and Heesung Park</i>	V06BT13A016
GT2022-82909 Experimental and Numerical Investigation of a Novel Method for Gradient Temperature Measurement Markus Schönheit, Marcus Thiele, Edward Ginzbursky, and Anastasia Thomas	V06BT13A017
GT2022-82914 Numerical Prediction of Surface Roughness Effect on the Performance of Internal Channels Sandeep, Mahendran Manoharan, Vinayender Kuchana, and Jong Liu	V06BT13A018
GT2022-83023 Influence of Gas-To-Wall Temperature Ratio on the Leakage Flow And Cooling Performance of a Turbine Squealer Tip Dongjie Yan, Jieling Li, Wenbo Xie, Zhaoguang Wang, Shaopeng Lu, Hongmei Jiang, and Qiang Zhang	V06BT13A019
GT2022-83024 Development of a Large-Scale High-Speed Linear Cascade Rig for Turbine Blade Tip Heat Transfer Study <i>Hongmei Jiang, Xu Peng, Wenbo Xie, Shaopeng Lu, Yongmin Gu, and Qiang</i> <i>Zhang</i>	V06BT13A020
GT2022-83031 Performance Improvement of Heat Exchangers Used in a Hybrid Electric Aircraft <i>Faezeh Rasimarzabadi, Alexander Crain, Pervez Canteenwalla, Patrick Zdunich,</i> <i>and Evan Gibney</i>	V06BT13A021

GT2022-83477 The Influence of Turbulence and Reynolds Number on Endwall Heat Transfer in a Vane Cascade <i>Maliha Yel Mahi, Emmanuel Chukwuemeka, Shaun Donovan, Forrest Ames,</i> <i>Yousef Kanani, and Sumanta Acharya</i>	V06BT13A022
GT2022-83498 A Numerical Investigation of Sweeping Air/Mist Jet Film Cooling Through a Passive Fluidic Oscillator, Part I: Steady vs. Sweeping Air-Only Jets Ramy Abdelmaksoud and Ting Wang	V06BT13A023
GT2022-83533 A Numerical Investigation of Sweeping Air/Mist Jet Film Cooling Through a Passive Fluidic Oscillator, Part II: Sweeping Air/Mist Jets <i>Ramy Abdelmaksoud and Ting Wang</i>	V06BT13A024
GT2022-84063 Impacts of the Additive Manufacturing Process on the Roughness of Engine Scale Vanes and Cooling Channels <i>Alexander J. Wildgoose, Karen A. Thole, Ramesh Subramanian, Lisa Kersting,</i> <i>and Anand Kulkarni</i>	V06BT13A025
GT2022-84253 Numerical Study of Roughness Effect on Performances in Representative Heat Exchanger Channels Joseph Jabbour, Damien Serret, and Hussein Yassin	V06BT13A026
Heat Transfer: Internal Air Systems	
GT2022-80195 Experimental Analysis of the Leakage Characteristics of Three Types of Annular Segmented Seals <i>Erwan Fourt, Mihai Arghir, Pascal Jolly, and Mohamed Andasmas</i>	V06BT14A001
GT2022-80477 Plume Model for Buoyancy-Induced Flow and Heat Transfer in Closed Rotating Cavities Hui Tang and I. Michael Owen	V06BT14A002
Hur rang and J. Michael Owen	
GT2022-80940 Design and Development of a Five-Hole Probe Calibrator and Traverse to Investigate Ingestion in Rotating Cavities of HP Compressors <i>Emma C. Fox, Mark R. Puttock-Brown, and Simon J. Davies</i>	V06BT14A003
 GT2022-80940 Design and Development of a Five-Hole Probe Calibrator and Traverse to Investigate Ingestion in Rotating Cavities of HP Compressors <i>Emma C. Fox, Mark R. Puttock-Brown, and Simon J. Davies</i> GT2022-81338 LES Investigation of Low Rossby Number Buoyant Flow in Rotating Cavities <i>Zixiang Sun, Feng Gao, John Chew, and Dario Amirante</i> 	V06BT14A003 V06BT14A004
 GT2022-80940 Design and Development of a Five-Hole Probe Calibrator and Traverse to Investigate Ingestion in Rotating Cavities of HP Compressors <i>Emma C. Fox, Mark R. Puttock-Brown, and Simon J. Davies</i> GT2022-81338 LES Investigation of Low Rossby Number Buoyant Flow in Rotating Cavities <i>Zixiang Sun, Feng Gao, John Chew, and Dario Amirante</i> GT2022-81791 Effect of Jet-to-Plate Temperature Ratio on Flow and Heat Transfer Features of Active Clearance Control Systems <i>Riccardo Da Soghe, Lorenzo Mazzei, Lorenzo Tarchi, Niccolò Casini, Niccolò Castelli, Lorenzo Cocchi, Alessio Picchi, Bruno Facchini, and Maxime Rotenberg</i> 	V06BT14A003 V06BT14A004 V06BT14A005

GT2022-82023	1007
GT2022-82430	1008
GT2022-82508	1009
GT2022-82591	4010
GT2022-82676	\011
GT2022-82846	\012
GT2022-82869	\013
GT2022-82982	\014
GT2022-83129	4015
GT2022-83194	\016
GT2022-83247	\017
GT2022-83345	\018
GT2022-83536	4019

GT2022-84036 Investigation of Impeller Backface Cavity Flowfield Using CFD and a One- Dimensional Flow Solver <i>E. Erdem, M. C. Sertcakan, S. Sal, Y. Dogu, and A. Yalcinkaya</i>	. V06BT14A020
GT2022-84308 Gas Turbine Secondary Air Systems Modeling Mustafa Kocagul, A. Cihat Arıkan, Omer Uyav, Avni Ertas, James Bruns, and Aditya Jayanthi	. V06BT14A021
Heat Transfer: Internal Cooling	
GT2022-77992 UHBR Open-Test-Case Fan ECL5/CATANA: Numerical Investigation Near the Stability Limit Including Aerodynamic Mistuning <i>Anne-Lise Fiquet, Xavier Ottavy, and Christoph Brandstetter</i>	. V06BT15A001
GT2022-78356 Amplitude and Wavelength Effects for Wavy Channels <i>Thomas M. Corbett, Karen A. Thole, and Sudhakar Bollapragada</i>	. V06BT15A002
GT2022-79362 Heat Transfer and Pressure Loss Correlations for Leading Edge, Jet Impingement Using Racetrack-Shaped Jets With Filleted Edges <i>Ritwik V. Kulkarni and Lesley M. Wright</i>	. V06BT15A003
GT2022-79391 Conjugate Heat Transfer Characteristics in a Vane Blade With Different Dimple/ Protrusion/Pin Fin Configuration for Trailing Region <i>Wei Du, Lei Luo, and Songtao Wang</i>	. V06BT15A004
GT2022-79526 Assessment of the Flow Field and Heat Transfer in an NGV Using Magnetic Resonance Velocimetry, Thermochromic Liquid Crystals and CFD Martin Bruschewski, Carolin Wüstenhagen, Clemens Domnick, Robert Krewinkel, Chao-Cheng Shiau, Sven Grundmann, and Je-Chin Han	. V06BT15A005
GT2022-79594 Jet Entrance Configurations and Swirl Motion Effects on Heat Transfer Characteristics Inside Blade Leading Edge of the Gas Turbine <i>Fifi Elwekeel, Antar Abdala, and Qun Zheng</i>	. V06BT15A006
GT2022-79595 Effects of Novel Roughened Wall of Swirl Cooling in Gas Turbine on Heat Transfer Characteristics and Pressure Drop <i>Fifi Elwekeel, Antar Abdala, and Qun Zheng</i>	. V06BT15A007
GT2022-79846 Comparison of Experimental and Numerical Local Rotational Heat Transfer Effects in a Two-Pass Cooling Channel Configuration David Gutiérrez de Arcos, Christian Waidmann, Rico Poser, Jens von Wolfersdorf, and Bernhard Jäppelt	. V06BT15A008
GT2022-81291 Experimental Investigation of Local Heat Transfer in a Rotating Two-Pass Cooling Channel Using the Transient Thermochromic Liquid Crystal (TLC) Technique <i>Christian Waidmann, Rico Poser, David Gutiérrez de Arcos, Michael Göhring, Jens</i> <i>von Wolfersdorf, Klaus Semmler, and Bernhard Jäppelt</i>	. V06BT15A009
GT2022-81510 Flow Scaling Considerations for Internal Coolant Warming <i>Connor J. Wiese, Carol E. Bryant, and James L. Rutledge</i>	. V06BT15A010

GT2022-81749 Assessment of Computational Fluid Dynamic Modeling of Multi-Jet Impingement Cooling and Validation With the Experiments Sadiya Tabassum, Michael Hilfer, Robin G. Brakmann, Christian Morsbach, Christian Willert, Marcel Matha, and Michael Schroll	V06BT15A011
GT2022-81780 Low Order Heat & Mass Flow Network Modelling for Quasi-Transpiration Cooling Systems <i>Michael van de Noort, Alexander V. Murray, and Peter T. Ireland</i>	V06BT15A012
GT2022-81928 A Computational Approach to Aerothermal Analysis of Complex Internal Turbine Cooling Geometries Ben Coulton, Alexander V. Murray, and Peter T. Ireland	V06BT15A013
GT2022-82035 Heat Transfer in a Rotating, Blade-Shaped, Two-Pass Cooling Channel With Various 45 Deg Rib Turbulators and a Tip Turning Vane <i>I-Lun Chen, Lesley M. Wright, Je-Chin Han, and Robert Krewinkel</i>	V06BT15A014
GT2022-82044 A Numerical Study on Conjugate Heat Transfer of Supercritical Carbon Dioxide Cooling in a Staggered Pin Fin Structure <i>Ryan J. Wardell, Marcel Otto, Matthew Smith, Erik Fernandez, and Jayanta Kapat</i>	V06BT15A015
GT2022-82095 An Iterative Neural Operator to Predict the Thermo-Fluid Information in Internal Cooling Channels <i>Li Yang, Qi Wang, and Yu Rao</i>	V06BT15A016
GT2022-82152 Flow Visualization Study From a Flat Plate With Multiple Impinging Jets for Different Cross-Flow Schemes Radheesh Dhanasegaran and Ssheshan Pugazhendhi	V06BT15A017
GT2022-82198 The Heat Transfer and Coherent Structures of the Tangential Impingement Jets in the Annular Chamber Studied With Extended Proper Orthogonal Decomposition <i>Lei Shi, Xiaocheng Zhu, and Zhaohui Du</i>	V06BT15A018
GT2022-82298 Heat Transfer and Pressure Loss of Additively Manufactured Internal Cooling Channels With Various Shapes Alexander J. Wildgoose and Karen A. Thole	V06BT15A019
GT2022-82346 Experimental Investigation on Heat Transfer Characteristics in an Impingement/ Effusion Cooling System of a Ribbed Turbine Casing <i>Guodong Li, Tao Guo, Changbo Qiu, Cunliang Liu, Huiren Zhu, and Jichen Li</i>	V06BT15A020
GT2022-82396 MRI Investigations of Internal Blade Cooling Flow and CFD Optimization Through Data Matching <i>Carolin Wüstenhagen, Clemens Domnick, Kristine John, Martin Bruschewski, and</i>	V06BT15A021
Sven Grundmann GT2022-82673 Impacts of Pin Fin Shape and Spacing on Heat Transfer and Pressure Losses Thomas M. Corbett, Karen A. Thole, and Sudhakar Bollapragada	V06BT15A022
GT2022-82775	V06BT15A023

GT2022-82797)6BT15A024
GT2022-82849)6BT15A025
GT2022-82864)6BT15A026
GT2022-83271)6BT15A027
GT2022-83333)6BT15A028
GT2022-83438)6BT15A029
GT2022-84169)6BT15A030