Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition

(GT2022)

Volume 9

June 13-17, 2022 Rotterdam, The Netherlands

> **Conference Sponsor** International Gas Turbine Institute

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS

Two Park Avenue * New York, N.Y. 10016

© 2022, The American Society of Mechanical Engineers, 2 Park Avenue, New York, NY 10016, USA (www.asme.org)

All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

INFORMATION CONTAINED IN THIS WORK HAS BEEN OBTAINED BY THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS FROM SOURCES BELIEVED TO BE RELIABLE. HOWEVER, NEITHER ASME NOR ITS AUTHORS OR EDITORS GUARANTEE THE ACCURACY OR COMPLETENESS OF ANY INFORMATION PUBLISHED IN THIS WORK. NEITHER ASME NOR ITS AUTHORS AND EDITORS SHALL BE RESPONSIBLE FOR ANY ERRORS, OMISSIONS, OR DAMAGES ARISING OUT OF THE USE OF THIS INFORMATION. THE WORK IS PUBLISHED WITH THE UNDERSTANDING THAT ASME AND ITS AUTHORS AND EDITORS ARE SUPPLYING INFORMATION BUT ARE NOT ATTEMPTING TO RENDER ENGINEERING OR OTHER PROFESSIONAL SERVICES. IF SUCH ENGINEERING OR PROFESSIONAL SERVICES ARE REQUIRED, THE ASSISTANCE OF AN APPROPRIATE PROFESSIONAL SHOULD BE SOUGHT.

ASME shall not be responsible for statements or opinions advanced in papers or . . . printed in its publications (B7.1.3). Statement from the Bylaws.

For authorization to photocopy material for internal or personal use under those circumstances not falling within the fair use provisions of the Copyright Act, contact the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923, tel: 978-750-8400, www.copyright.com.

Requests for special permission or bulk reproduction should be addressed to the ASME Publishing Department, or submitted online at: https://www.asme.org/publications-submissions/journals/information-for-authors/journalguidelines/rights-and-permissions

ISBN: 978-0-7918-8608-3

CONTENTS

Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition Volume 9

Supercritical CO₂

GT2022-80558	V009T28A001
Parametric Modeling and Economic Analysis of a 2MWth 3-Stream sCO ₂ Heat Exchanger	
Joshua Neveu, Owen Pryor, Stefan Cich, and Ellen Stechel	
GT2022-80658 Design and Operability Challenges for Supercritical CO ₂ Plants: The sCO ₂ -Flex Centrifugal Compressor Test Experience <i>Bigi Manuele, Bisio Valentina, Evangelisti Silvia, Giancotti Marco, Milani Alberto,</i> <i>and Pellegrini Tiziano</i>	V009T28A002
GT2022-80881	V009T28A003
An Experimental Study of Supercritical Methane Injection Characteristics in a CO ₂ Environment	
Ritesh Ghorpade, Gihun Kim, K. R. V. Manikantachari (Raghu), Joshua Weiner, Daniel T. Banuti, and Subith Vasu	
GT2022-81223 Integrated Aerodynamic and Structural Blade Shape Optimisation of Axial Turbines Operating With Supercritical Carbon Dioxide Blended With Dopants <i>Abdelrahman S. Abdeldayem, Martin T. White, Andrea Paggini, Marco Ruggiero,</i>	V009T28A004
and Abdulnaser I. Sayma	
GT2022-81576 The Effect of Nitrogen Impurities on Oxy-Fuel Combustion Under Supercritical-CO ₂ Conditions	V009T28A005
Ponnuthurai Gokulakrishnan, Jiankun Shao, Michael Klassen, David Davidson, and Ronald Hanson	
GT2022-81699 Two Stage Radial Compressor for a Kilowatt Scale Supercritical Carbon Dioxide	V009T28A006
Power Block: Design Considerations Lakshminarayanan Seshadri, Ashutosh Patel, Vijay Biradar, Pramod Kumar, and Pramod Chandra Gopi	
GT2022-81747 Design of a 1MW Direct-Fired Oxy Combustor for sCO ₂ Power Cycles <i>Steve White, Grey Berry, and Brian Connolly</i>	V009T28A007
GT2022-82013	V009T28A008
Design of a 2 MW Molten Salt Driven Supercritical CO ₂ Cycle and Turbomachinery for the SOLARSCO2OL Demonstration Project <i>Rafael Guédez, Stefano Barberis, Simone Maccarini, Anton López-Román, Alberto</i> <i>Milani, Emanuel Pesatori, Unai Oyarzábal, and Alvaro Sánchez</i>	
GT2022-82017	V009T28A009
sCO ₂ Compressor with Test Data Validation Ashvin Hosangadi, Tim Weathers, Zisen Liu, Robert Pelton, Karl Wygant, and Jason Wilkes	

GT2022-82060	
GT2022-82090	
GT2022-82145	
GT2022-82151	
GT2022-82220	
GT2022-82301	
GT2022-82438	
GT2022-82511	
GT2022-82921	
GT2022-83021	
Milani, Valentina Bisio, Roberto Valente, Stefano Barberis, and Rafael Guedez GT2022-83116. Innovative Expanders for Supercritical Carbon Dioxide Cycles Alessandro Perri, Avinash Renuke, and Alberto Traverso	
GT2022-83171 V009T28A021 Computational and Experimental Assessment of a MW-Scale Supercritical CO2 Compressor Operating in Multiple Near-Critical Conditions Lorenzo Toni, Ernani Fulvio Bellobuono, Roberto Valente, Alessandro Romei, Paolo Gaetani, and Giacomo Persico	

GT2022-83205	
Paolo Gabrielli, Siddhant Singh, Giovanni Sansavini, Luis Sanz Garcia, Emmanuel Jacquemoud, and Philipp Jenny	
GT2022-83262	
GT2022-83273	
GT2022-83284	
GT2022-83319	
GT2022-83380	
GT2022-83412	
GT2022-83434	
GT2022-83440	
GT2022-83501	
GT2022-83503	
GT2022-83576	
GT2022-83588	

GT2022-84197	V009T28A035
Preliminary Analysis of High-Temperature Corrosion of Metallic Alloys With CO_2 and	
CO ₂ -Based Working Mixtures for Power Plants Applications	
Lorenza Putelli, Gioele Di Marcoberardino, Marcello Gelfi, Costante Mario	
Invernizzi, Paolo Giulio Iora, and Giampaolo Manzolini	
GT2022-84278	V009T28A036
Impact of Inlet Conditions on Performance of a Supercritical CO ₂ Centrifugal	

Compressor Xudong Jiang, Zhiheng Wang, and Guang Xi