Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition

(GT2022)

Volume 10C

June 13-17, 2022 Rotterdam, The Netherlands

> **Conference Sponsor** International Gas Turbine Institute

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS

Two Park Avenue * New York, N.Y. 10016

© 2022, The American Society of Mechanical Engineers, 2 Park Avenue, New York, NY 10016, USA (www.asme.org)

All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

INFORMATION CONTAINED IN THIS WORK HAS BEEN OBTAINED BY THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS FROM SOURCES BELIEVED TO BE RELIABLE. HOWEVER, NEITHER ASME NOR ITS AUTHORS OR EDITORS GUARANTEE THE ACCURACY OR COMPLETENESS OF ANY INFORMATION PUBLISHED IN THIS WORK. NEITHER ASME NOR ITS AUTHORS AND EDITORS SHALL BE RESPONSIBLE FOR ANY ERRORS, OMISSIONS, OR DAMAGES ARISING OUT OF THE USE OF THIS INFORMATION. THE WORK IS PUBLISHED WITH THE UNDERSTANDING THAT ASME AND ITS AUTHORS AND EDITORS ARE SUPPLYING INFORMATION BUT ARE NOT ATTEMPTING TO RENDER ENGINEERING OR OTHER PROFESSIONAL SERVICES. IF SUCH ENGINEERING OR PROFESSIONAL SERVICES ARE REQUIRED, THE ASSISTANCE OF AN APPROPRIATE PROFESSIONAL SHOULD BE SOUGHT.

ASME shall not be responsible for statements or opinions advanced in papers or . . . printed in its publications (B7.1.3). Statement from the Bylaws.

For authorization to photocopy material for internal or personal use under those circumstances not falling within the fair use provisions of the Copyright Act, contact the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923, tel: 978-750-8400, www.copyright.com.

Requests for special permission or bulk reproduction should be addressed to the ASME Publishing Department, or submitted online at: https://www.asme.org/publications-submissions/journals/information-for-authors/journalguidelines/rights-and-permissions

ISBN: 978-0-7918-8611-3

CONTENTS

Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition Volume 10C

Turbomachinery: Design Methods and CFD Modeling for Turbomachinery

GT2022-78010 Predictions of Falling Wavy Films Based on the Depth Averaged Thin Film Model and Its Application to Aeroengine Bearing Chamber <i>K. Singh, A. Nicoli, R. Jefferson-Loveday, S. Ambrose, P. Paleo Cageao, K. Johnson, S. Mouvanal, J. Cao, and A. Jacobs</i>	V10CT32A001
GT2022-78025 Modeling and Simulation of the Cavitation Phenomenon in a Turbopump: A Multiphase Approach <i>Joris Cazé, Fabien Petitpas, Eric Daniel, Sébastien Le Martelot, and Matthieu</i> <i>Queguineur</i>	V10CT32A002
GT2022-78254 Design Optimization of Integrated Anti-Rotation Feature for Power Turbine Nozzles <i>Abhimanyu Soman and Simone Colantoni</i>	V10CT32A003
GT2022-78911. Numerical Observations of a Stall Phenomenon in the NASA CC3 Compressor <i>Michael Ni, Gregorio Robles Vega, Ron Ho Ni, John Clark, and Michael List</i>	V10CT32A004
GT2022-79369 Low Mach Preconditioning for Turbomachinery Flow Simulations With Cavities and Variable Gas Compositions <i>Pierre Sivel, Christian Frey, Edmund Kügeler, and Markus Keil</i>	V10CT32A005
GT2022-80315 On the Use of Kinetic-Energy Balance for the Feature-Based Mesh Adaptation Applied to Large-Eddy Simulation in Complex Geometries <i>Adrien Grenouilloux, Guillaume Balarac, Julien Leparoux, Vincent Moureau,</i> <i>Ghislain Lartigue, Pierre Bénard, Renaud Mercier, and Paul Ferrey</i>	V10CT32A006
GT2022-80391 Multi-Fidelity Simulation for Secondary Air System Seal Design in Aero Engines Adele Nasti, Ivan I. Voutchkov, David J. J. Toal, and Andrew J. Keane	V10CT32A007
GT2022-80456 A Turbo-Oriented Data-Driven Modification to the Spalart-Allmaras Turbulence Model <i>Xiao He, Fanzhou Zhao, and Mehdi Vahdati</i>	V10CT32A008
GT2022-80476 A Coupled Computational Aero-Acoustics (CAA)/ Large-Eddy Simulation (LES) Approach for the Pressure Calculation in Internal Low-Mach Number Flows <i>Pierre Bénez, Ghislain Lartigue, Vincent Moureau, Guillaume Ribert, and Marine</i> <i>Robin</i>	V10CT32A009
GT2022-80958 Mesh Refinement and Inlet Turbulence Intensity in the Numerical Evaluation of Cooling Effectiveness: A Systematic Study on an Industrial Gas Turbine Federico Lo Presti, Benjamin Winhart, Pascal Post, Francesca di Mare, Alexander Wiedermann, Johannes Greving, and Robert Krewinkel	V10CT32A010

GT2022-80960 Investigation of Physics-Informed Neural Networks Based Solution Techniques for Internal Flows Pascal Post, Benjamin Winhart, and Francesca di Mare	V10CT32A011
GT2022-81059 Numerical Investigation of the Effects of Tip Clearance and Rotor Cavities on the Performance of a 1.5-Stage High-Work Turbine <i>Thorsten Hansen, Erik Munktell, Georg Scheuerer, and Kim Zwiener</i>	V10CT32A012
GT2022-81091 Multi-Objective Development of Machine-Learnt Closures for Fully Integrated Transition and Wake Mixing Predictions in Low Pressure Turbines Harshal D. Akolekar, Fabian Waschkowski, Roberto Pacciani, Yaomin Zhao, and Richard D. Sandberg	V10CT32A013
GT2022-81218 Application of a Distributed Element Roughness Model to Additively Manufactured Internal Cooling Channels Samuel Altland, Xiang Yang, Karen Thole, Robert Kunz, and Stephen McClain	V10CT32A014
GT2022-81564 An Approximate Time Domain Nonlinear Harmonic Method for Analyzing Unsteady Flows With Multiple Fundamental Modes <i>Dingxi Wang and Sen Zhang</i>	V10CT32A015
GT2022-81670 Gas Turbine Transition Duct Design Considerations <i>Aparna Satheesh, S. Manoharan, Sendil Soundiramourty, and S. Babu</i>	V10CT32A016
GT2022-81672 Gas Turbine Transition Duct Gap Assessment for Unsymmetrical Thermal Boundary Conditions <i>Manoharan Sambandam and Simone Colantoni</i>	V10CT32A017
GT2022-81677 Influence From Nozzle Guide Vane Wakes and Inlet End-Wall Boundary Layers on Turbine Rear Structure Aerodynamics <i>Pär Nylander, Srikanth Deshpande, and Jonas Larsson</i>	V10CT32A018
GT2022-81690 Design Optimization of a High-Speed Twin-Stage Compressor for Next-Gen Aircraft Environmental Control System Andrea Giuffre', Piero Colonna, and Matteo Pini	V10CT32A019
GT2022-81768 Modeling of Inviscid Flow Shock Formation in a Wedge-Shaped Domain Using a Physics-Informed Neural Network-Based Partial Differential Equation Solver <i>Ryno Laubscher, Pieter Rousseau, and Chris Meyer</i>	V10CT32A020
GT2022-81784 Parametric Studies and Simulations of a Hydrogen Micromix Combustor <i>Ainslie French, Giuseppe Mingione, Antonio Schettino, Pietro Roncioni, Pier Luigi</i> <i>Vitagliano, and Mauro Minervino</i>	V10CT32A021
GT2022-81969 Experimental Verification of a Practical Engineering Design Method for Mixed-Flow Compressor Stages <i>Chenqing Zhang, Chenxi Zhao, Yonghong Tang, and Guang Xi</i>	V10CT32A022
GT2022-82080 Calibrated Rotation-Helicity-Quadratic Constitutive Relation Spalart-Allmaras (R-H- QCR SA) Model for the Prediction of Multi-Stage Compressor Characteristics <i>Kotaro Matsui, Naoki Tani, Ethan Perez, Ryan T. Kelly, and Aleksandar Jemcov</i>	V10CT32A023

GT2022-82100 High-Order Spectral/hp Compressible and Incompressible Comparison of Transitional Boundary-Layers Subject to a Realistic Pressure Gradient and High Reynolds Number <i>Guglielmo Vivarelli, João Anderson Isler, Francesco Montomoli, Spencer J.</i> <i>Sherwin, and Paolo Adami</i>	V10CT32A024
GT2022-82196 Numerical Investigation Into Maximum Pressure Capability of Intershaft Hydraulic Seals	V10CT32A025
Achinie Warusevitane, Kathy Johnson, and Stephen Ambrose GT2022-82229 New Method for Cycle Performance Prediction Based on Detailed Compressor and Gas Turbine Flow Calculations Milan V. Petrovic, Alexander Wiedermann, Milan B. Banjac, Srdjan Milic, Djordje Petkovic, and Teodora Madzar	V10CT32A026
GT2022-82418 Analysis of Cavity Leakage Effects on Coupled Non-Axisymmetric Endwall-Airfoil Optimization in a Low-Speed Compressor Tandem Stator <i>Mattia Straccia, Samuele Giannini, and Volker Gümmer</i>	V10CT32A027
GT2022-82419 A Numerical Study on the Effects of Circumferential Positions of Combustor Hot Streaks on a TCF Configuration <i>Richard Benauer, Stefan Schreck, Peter Leitl, Ena Badzek, Marios Patinios, and</i> <i>Federica Farisco</i>	V10CT32A028
GT2022-82420 Flow Design Using CFD for a Constant-Section Recursive Sequential Combustor Andrea Hofer, Nina Paulitsch, and Fabrice Giuliani	V10CT32A029
GT2022-82425 A Microscale-Based Methodology to Predict the Performance Degradation in Turbomachinery due to Particle Deposition <i>Riccardo Friso, Nicola Zanini, Alessio Suman, Nicola Casari, and Michele Pinelli</i>	V10CT32A030
GT2022-82519 Application of 3D Inverse Design Method on a Transonic Compressor Stage Luying Zhang, Saurya Ranjan Ray, and Mehrdad Zangeneh	V10CT32A031
GT2022-82531 Development of Machine-Learnt Turbulence Closures for Wake Mixing Predictions in Low-Pressure Turbines <i>Yuri Frey Marioni, Paolo Adami, Raul Vazquez Diaz, Andrea Cassinelli, Spencer</i> <i>Sherwin, and Francesco Montomoli</i>	V10CT32A032
GT2022-82533 Numerical Simulation of Multi-Scale Oil Films on a Rotating Cup Using VOF and Coupled Eulerian Thin-Film-DPM Approaches <i>A. Nicoli, K. Singh, R. Jefferson-Loveday, S. Ambrose, and S. Mouvanal</i>	V10CT32A033
GT2022-82548 Evaluation of Surge Prediction Capabilities of Body-Force Model on a High-Speed Multi-Stage Axial-Radial Compressor Hanxuan Zeng, Tengbo Fan, Zhenzhong Sun, Baotong Wang, and Xinqian Zheng	V10CT32A034
GT2022-82569 Exploiting GPU-Based HPC Architectures to Accelerate an Unsteady CFD Solver for Turbomachinery Applications <i>Francesco Poli, Michele Marconcini, Roberto Pacciani, Donato Magarielli, Ennio</i> <i>Spano, and Andrea Arnone</i>	V10CT32A035

GT2022-82590
GT2022-82627
GT2022-82636
GT2022-82959
GT2022-83081
GT2022-83163
GT2022-83277
GT2022-83376
GT2022-83460
GT2022-83478
GT2022-84035
GT2022-84165
GT2022-84388

Yangwei Liu, Xiaosong Yong, and Yumeng Tang

Turbomachinery: Ducts, Noise, and Component Interactions

GT2022-78065 The Impact of Inlet Flow Angle on Turbine Vane Frame Aerodynamic Performance Simon Pramstrahler, Andreas Peters, Mikel Lucas García De Albéniz, Peter Adrian Leitl, Franz Heitmeir, and Andreas Marn	V10CT33A001
GT2022-80517 Acoustic Optimization Approach for Annular Diffusers in Turbomachinery Applications Using Plane Wave Modelling <i>Felix Fischer and Jörg Seume</i>	V10CT33A002
GT2022-80768 Impact of Inlet Conditions on TVF Exit Flow Field Mattia Graiff, Marian Staggl, Christian Wakelam, Franz Heitmeir, and Emil Göttlich	V10CT33A003
GT2022-81083 Numerical Investigation of a Turbine Vane Frame for Co- and Counter-Rotating Configuration Nicolas Krajnc, Filippo Merli, Asim Hafizovic, Andreas Peters, and Emil Göttlich	V10CT33A004
GT2022-81912 Analysis of Ultra-High Bypass Ratio Turbofan Nacelle Geometries With Conventional and Short Intakes at Take-Off and Cruise <i>Andrea Magrini, Denis Bousi, and Ernesto Benini</i>	V10CT33A005
GT2022-81957 Analytical Modeling of the Injector Response to High Frequency Modes in a Tubular Multi-Jet-Combustor Jan-Andre Rosenkranz and Thomas Sattelmayer	V10CT33A006
GT2022-81984 Validation of an Analytical Model for the Acoustic Impedance Eduction of Multi-Cavity Resonant Liners by a High-Fidelity LES Approach <i>Simone Giaccherini, Lorenzo Pinelli, Michele Marconcini, Roberto Pacciani, and</i> <i>Andrea Arnone</i>	V10CT33A007
GT2022-82141 Aerodynamic Noise Characteristics of Axial Flow Fan in Narrow Space and Noise Reduction Based on Flow Control <i>Zonghan Sun, Pengfei Chai, Jie Tian, Zhaohui Du, and Hua Ouyang</i>	V10CT33A008
GT2022-82149 Investigations of the Unsteady Aerodynamic Characteristics for Intakes at Crosswind <i>Tommaso Piovesan, Zhang Wenqiang, Mehdi Vahdati, and Pavlos K. Zachos</i>	V10CT33A009
GT2022-82399 The Influence of Combustor Hot Streaks on the Aerodynamic Performance of a Turbine Center Frame <i>Ena Badžek, Marios Patinios, Federica Farisco, Franz Heitmeir, and Emil Göttlich</i>	V10CT33A010
GT2022-82449 Experimental Investigation of an Aggressive S-Shaped Intermediate Compressor Duct <i>A. Kasper, T. Dygutsch, S. Grund, M. Beversdorff, S. Hakansson, E. Nicke, and M.</i>	V10CT33A011
Lejon GT2022-82458 The Interaction of Main Stream Flow and Cavity Flows in Turbine Center Frames and Turbine Vane Frames <i>Filippo Merli, Asim Hafizovic, Nicolas Krajnc, Malte Schien, Andreas Peters, Franz</i> <i>Heitmeir, and Emil Göttlich</i>	V10CT33A012

GT2022-82502	0CT33A013
GT2022-82515	0CT33A014
GT2022-82526	0CT33A015
GT2022-82570	0CT33A016
GT2022-82901	0CT33A017
GT2022-82964	0CT33A018
GT2022-83143	0CT33A019
GT2022-84013	0CT33A020