Proceedings of ASME 2022 Pressure Vessels and Piping Conference

(PVP2022)

Volume 1

July 17-22, 2022 Las Vegas, Nevada

Conference Sponsor Pressure Vessels and Piping Division

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS

Two Park Avenue * New York, N.Y. 10016

© 2022, The American Society of Mechanical Engineers, 2 Park Avenue, New York, NY 10016, USA (www.asme.org)

All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

INFORMATION CONTAINED IN THIS WORK HAS BEEN OBTAINED BY THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS FROM SOURCES BELIEVED TO BE RELIABLE. HOWEVER, NEITHER ASME NOR ITS AUTHORS OR EDITORS GUARANTEE THE ACCURACY OR COMPLETENESS OF ANY INFORMATION PUBLISHED IN THIS WORK. NEITHER ASME NOR ITS AUTHORS AND EDITORS SHALL BE RESPONSIBLE FOR ANY ERRORS, OMISSIONS, OR DAMAGES ARISING OUT OF THE USE OF THIS INFORMATION. THE WORK IS PUBLISHED WITH THE UNDERSTANDING THAT ASME AND ITS AUTHORS AND EDITORS ARE SUPPLYING INFORMATION BUT ARE NOT ATTEMPTING TO RENDER ENGINEERING OR OTHER PROFESSIONAL SERVICES. IF SUCH ENGINEERING OR PROFESSIONAL SERVICES ARE REQUIRED, THE ASSISTANCE OF AN APPROPRIATE PROFESSIONAL SHOULD BE SOUGHT.

ASME shall not be responsible for statements or opinions advanced in papers or . . . printed in its publications (B7.1.3). Statement from the Bylaws.

For authorization to photocopy material for internal or personal use under those circumstances not falling within the fair use provisions of the Copyright Act, contact the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923, tel: 978-750-8400, www.copyright.com.

Requests for special permission or bulk reproduction should be addressed to the ASME Publishing Department, or submitted online at: https://www.asme.org/publications-submissions/journals/information-for-authors/journalguidelines/rights-and-permissions

ISBN: 978-0-7918-8614-4

CONTENTS

Proceedings of ASME 2022 Pressure Vessels and Piping Conference Volume 1

CODES AND STANDARDS

ASME Code Section XI Activities
PVP2022-85957
Code Assessments of Beyond Design Basis Events
PVP2022-84710
Constraint Effects on Codes and Standards
PVP2022-84186 V001T01A003 Constraint Effect on Fracture in Ductile-Brittle Transition Temperature Region (Report 2) <i>Kiminobu Hojo, Takatoshi Hirota, Yasuto Nagoshi, Takuya Fukahori, Kimihisa</i> <i>Sakima, Mitsuru Ohata, and Fumiyoshi Minami</i>
PVP2022-86188 V001T01A004 A Review of Constraint Effects on Fracture Toughness for Structural Integrity Assessment in Fitness-for-Service Codes Steven X. Xu and Kim Wallin Steven X. Xu and Kim Wallin
Developments in HDPE and Non-Metallic Pipe Codes and Standards
PVP2022-84456 V001T01A005 Design of an Intelligent Butt-Fusing Welding Machine for HDPE Pipes Zhenchao Wang, Lu Xu, Qijiang You, Yijuan Peng, and Qiuju Zhang
PVP2022-84477
PVP2022-84645 V001T01A007 A Novel Real-Time Evaluation Method for the Temperature Field in the Electrofusion Welding of Polyethylene Pipe Weican Guo, Yangji Tao, and Cunjian Miao Weican Guo, Yangji Tao, and Cunjian Miao
PVP2022-84835 V001T01A008 Technical Basis for Proposed Code Case on Evaluation of Flaws in Butt Fusion Joints in Class 3 High Density Polyethylene Piping Cheng Liu, Douglas Scarth, and Douglas Munson Cheng Liu, Douglas Scarth, and Douglas Munson

Environmental Fatigue Issues (Joint M&F)

PVP2022-78364
Fatigue Benchmark Comparison Effort Between Code_Aster and CNNC/NPIC Software – Part 3
Yin Liu, Hai Xie, Zichen Kong, Xuejiao Shao, Stephan Courtin, Sam Cuvilliez, and Furui Xiong
PVP2022-84007 V001T01A010 EPR Piping Material Study: Basic Characterization and Low Cycle Fatigue at Room Temperature Tommi Seppänen, Jouni Alhainen, Esko Arilahti, Jussi Solin, Rami Vanninen, and Erkki Pulkkinen
PVP2022-84208 V001T01A011 The Development of a New Method to Compare the Fatigue Crack Growth Rates of Austenitic Stainless Steel Operating in a PWR Primary Coolant Subjected to Plant Realistic Temperature Loading Benjamin Howe, Fabio Scenini, Grace Burke, and Jonathan Mann
PVP2022-84249 V001T01A012 Statistical Analyses of Austenitic Stainless Steel High Cycle Fatigue Data to Support a Revised Design Factor for Design Fatigue Curve Development Andrew Morley and Alec McLennan Andrew Morley and Alec McLennan
PVP2022-84625 V001T01A013 INCEFA-SCALE (Increasing Safety in NPPs by Covering Gaps in Environmental Fatigue Assessment - Focusing on Gaps Between Laboratory Data and Component-Scale) Alec McLennan, Roman Cicero, Kevin Mottershead, Stephan Courtin, Zaiqing Que, and Sergio Cicero
PVP2022-84627 V001T01A014 Environment Assisted Fatigue – Rules, Assumptions and Challenges for Fatigue Management of Primary Piping Jussi Solin, Tommi Seppänen, Petri Lemettinen, Rami Vanninen, and Erkki Pulkkinen
PVP2022-84719
Fatigue and Fracture Assessment and Management – A Probabilistic Perspective
PVP2022-84851
PVP2022-84994 V001T01A017 An Assessment of the Significance of Design Factors in CUF-Based Fatigue Performance and Related Margins Yogendra Garud
PVP2022-85051 V001T01A018 Fatigue Damage Estimation From Pseudo-Random Load Sequence Generated for Metals and Fiber Reinforced Composites Raghu V. Prakash and Anurag Jeevan Patil
PVP2022-86189 V001T01A019 State of the Art in CUF-Based Fatigue Assessment & Related Issues From Regulatory and Code Perspectives for Long-Term Operation Yogendra Garud Yogendra Garud

Fatigue and Ratcheting Issues in Pressure Vessel and Piping Design	
PVP2022-84241 Direct Analysis of Elastic-Plastic Strain Ranges and Accumulated Strains Considering Stress Stiffening Bastian Vollrath and Hartwig Hübel	V001T01A020
Fatigue Monitoring and Related Assessment Method	
PVP2022-79676 Practical Methodology of Multiaxial Dynamic Strain Measurement and Stress Calculation for Fatigue Evaluation of Small Bore Connection Due to Vibration <i>Tsunemichi Takahama</i>	V001T01A021
PVP2022-84753 CPS – an Advanced Tool for Monitoring Fatigue and Fracture on Pipes and Other Mechanical Components <i>Georg Wackenhut, Robert Lammert, Fabian Silber, and Stefan Weihe</i>	V001T01A022
PVP2022-84782 Study on Alternative Bounding Approach for ASME Code Section XI Appendix L Do Jun Shim and Minh N. Tran	V001T01A023
PVP2022-84913 Inverse Conduction Method for Complex Thermal Loading <i>Timothy Gilman</i>	V001T01A024
Fracture Toughness and Other Small Specimen Mechanical Properties (Joint MF-11)	
PVP2022-82754 Practical Procedure of Test Temperature Selection for Mini-C(T) Master Curve Evaluation <i>Masato Yamamoto, Seiji Sakuraya, Yuji Kitsunai, and Mark Kirk</i>	V001T01A025
PVP2022-83871 FRACTESUS Project: Final Selection of RPV Materials for Unirradiated and Irradiated Round Robins <i>Tomasz Brynk, Inge Uytdenhouwen, Pentti Arffman, Eberhard Altstadt, Radim</i> <i>Kopriva, Florian Obermeier, and Marta Serrano</i>	V001T01A026
PVP2022-84827 Use of Mini-CT Specimens for Fracture Toughness Characterization of Irradiated Highly Embrittled Weld <i>Mikhail A. Sokolov</i>	V001T01A027
High Temperature Codes and Standards	
PVP2022-82286 Extrapolation of High Temperature Material Properties of Inconel 617 for Molten Chloride Reactor Experiment Applications <i>Ramesh Rajasekaran, Hsu-Kuang Ching, and Francesco Deleo</i>	V001T01A028
PVP2022-82890 Assessment of the Impact of Elevated Temperature Design Code Revisions on Creep Damage Estimation <i>Masanori Ando, Satoshi Okajima, and Hideki Takasho</i>	V001T01A029
PVP2022-84248 Demystifying the 1.1 Factor for Tensile Strength Above Room Temperature in Development of the Boiler Code Stress Tables <i>Weiju Ren</i>	V001T01A030

PVP2022-84602	1
Analysis of Piping Components for High Temperature Reza Adibi-Asl	
PVP2022-84605	?
Hydrogen Effects on Material Behavior for Structural Integrity Assessment (Joint MF-2)	
PVP2022-84687	•
PVP2022-85158 V001T01A034 An Extended Process-Zone Modeling Framework for Overload Crack Initiation in Zr- 2.5Nb Pressure Tubes 2.5Nb Pressure Tubes Steven X. Xu, Douglas A. Scarth, and David Cho	ļ
Improvement of Flaw Characterization Rules for FFS	
PVP2022-84598	;
PVP2022-84667	•
PVP2022-84957	,
PVP2022-84958	\$
International Session for Fast Reactor Design and Construction	
PVP2022-84783)
Peijun Hou, Ting-Leung Sham, and Yanli Wang PVP2022-84817 V001T01A040 Experimental Basis for the Extension of Elastic-Perfectly Plastic Strain Limits V001T01A040 Evaluation Procedure of ASME Section III, Division 5 Code Case N-861 to Grade 91, Alloy 800H and 2.25Cr-1Mo)
Yanli Wang, Peijun Hou, and Ting-Leung Sham PVP2022-85479 V001T01A041 Adaptation of Standards to Innovative Reactors Jorge Enrique Munoz Garcia, Cécile Pétesch, and Thierry Lebarbé	

Master Curve Method and Applications

PVP2022-78263
Sergio Cicero and Sergio Arrieta PVP2022-83867 V001T01A043
Impact of Elevated Loading Rates on the Shape of the Master Curve (ASTM E1921) for a German RPV Steel Johannes Tlatlik and Uwe Mayer
PVP2022-83905
PVP2022-83909 V001T01A045 Development of a Technical Basis for Code Case N-914, "Accounting for the Effect of Embrittlement on Fracture Toughness Properties Used in Evaluations of Pressure Boundary Materials in Class 1 Ferritic Steel Components, Section XI, Division 1" Mark Kirk, Marjorie Erickson, and Elliot J. Long
PVP2022-83921
PVP2022-84048
PVP2022-84514 V001T01A048 Specimen Size and Geometry Effects on the Master Curve Fracture Toughness Measurements of EUROFER97 and F82H Steels Xiang (Frank) Chen, Mikhail A. Sokolov, Sehila M. Gonzalez De Vicente, and Yutai Katoh
PVP2022-85289
Probabilistic and Risk-Informed Methods for Structural Integrity Assessment
PVP2022-78318
PVP2022-81135 V001T01A051 Probabilistic Structural Integrity Analysis for Advanced Modular Reactors James M. Finley and Henry Cathcart
PVP2022-84009 V001T01A052 Development of Probabilistic Analysis Code for Evaluating Seismic Fragility of Aged Pipes With Wall-Thinning Yoshihito Yamaguchi, Akemi Nishida, and Yinsheng Li
PVP2022-84423 V001T01A053 Direct Method-Based Probabilistic Structural Integrity Assessment for High- Temperature Components Considering Uncertain Load Conditions Xiaoxiao Wang, Zhiyuan Ma, Haofeng Chen, and Weiling Luan

PVP2022-84526	154
PVP2022-84742	155
Recent Developments in ASME Codes and Standards	
PVP2022-80241	156
PVP2022-83710 V001T01A0 Technical Basis of ASME B31 Code Case 216: Use of Enhanced Pressure Ratings for Brazed Copper Tubes and Fittings by Cold Stretch Process Kang Xu, Gustavo Timoteo, Adam Renaldo, Philip Miller, and Terry Wills	57
PVP2022-83840	58
PVP2022-83919	159
PVP2022-84487	60
PVP2022-84743	61
PVP2022-84807	162
PVP2022-84811	163
PVP2022-84861	64
PVP2022-86019	65
PVP2022-86021	166

Recent Developments in Chinese Codes and Standards

PVP2022-83990 V Review on Non-Metallic Pressure Vessels for Cryogenic Applications V Yutong Yuan, Zhoutian Ge, Jiangkun Bai, Guoying Wang, and Jianfeng Shi	001T01A067
 PVP2022-84582 Numerical Simulation Research on Heat Transfer Characteristics of On-Board Type 4 Hydrogen Storage Cylinders Under Localized Fire Jitian Song, Chaoyang Zhu, Xiang Li, Chunlin Gu, Liang Huang, and Jiepu Li 	001T01A068
PVP2022-84610 V Research on Standard Comparison of Hydrogen Cycling Test Method for On-Board Composite Hydrogen Storage Cylinders <i>Jun Shi, Biao Cheng, Jiepu Li, Mingdao Sun, Xin Li, and Xiang Li</i>	001T01A069
PVP2022-84646 V Overview of Standards on Pressure Cycling Test for On-Board Composite Hydrogen Storage Cylinders <i>Qianghua Huang, Xiang Li, Jiepu Li, Yitao Liu, Xin Li, and Chaoyang Zhu</i>	001T01A070
 PVP2022-84658 Technological Progress on Safety Assurance for Hydrogen Storage and Transportation Pressure Equipments in China Xuedong Chen, Zhichao Fan, Shuangqing Xu, Peng Xu, and Xiaoliang Liu 	001T01A071
 PVP2022-84715 Review on Inspection Status of Pressure Equipment in LNG Receiving Station in China <i>Zhixiang Duan, Kun Shi, Yunyi Zhou, and Hangjian Hu</i> 	001T01A072
 PVP2022-85133 Study on Test and Evaluation Methods of Assembly Valve on High Pressure Hydrogen Storage Cylinder for HFCV Chunlin Gu, Jun Li, Ming Zhu, Baodi Zhao, Jiepu Li, and Xiang Li 	001T01A073
PVP2022-85852 V Challenges in Developing Linerless Composite Gas Cylinder for On-Board Hydrogen Storage Zhoutian Ge, Yutong Yuan, and Jianfeng Shi	001T01A074
PVP2022-85908 V The Standardization Work Status and Development Trend of High Pressure Hydrogen Storage Technology Xiaoliang Jia, Zhiwei Chen, Xiang Li, Ke Bo, and Fang Ji	001T01A075
Recent Developments in European Codes and Standards	
PVP2022-84897 V Guidance on the Suitability of Design Codes and Assessment Procedures for Deploying High Temperature Advanced Modular Reactors in the UK Marc Chevalier, Peter James, and Nick Underwood	001T01A076
Repair, Replacement, and Mitigation for Fitness-for-Service Rules	
PVP2022-83798 V Revision of Case N-666-1 to Permit Overlay Repair of Dissimilar Metal Socket Welds v and to Allow Higher Carbon Content in the Pipe and Socket Fitting v	001T01A077

Steven L. McCracken and Christopher Lohse

PVP2022-84425	8
Use of HDPE Piping in Buried Nuclear Class 3 Systems Categorized as Low Safety Significant J. E. (Jim) O'Sullivan	-
PVP2022-84884 V001T01A079 Quantification of the Tempering Response for Temper Bead Welding of SA-508 Low Alloy Steel Alloy Steel Eun Jang, Yuxiang Luo, Boian Alexandrov, Steven L. McCracken, Jon Tatman, and Darren Barborak	Э
PVP2022-85151 V001T01A080 Development of the Technical Basis for the New Code Case "Performance and Qualification Criteria for Mitigation of Stress Corrosion Cracking by Surface Stress Improvement" Nicholas Mohr, Stephen Tate, Marc Albert, Sungwoo Cho, Won-Geun Yi, Jean Collin, Markus Burkardt, John Broussard, and Young Sik Pyun)
Structural Integrity of Pressure Components	
PVP2022-78987	1
PVP2022-79529	2
PVP2022-83699	3
PVP2022-84559	4
PVP2022-84770 V001T01A085 Design of Ellipsoidal and Torispherical Heads in Pressure Vessel and Review of Restrictions in Material Strength Imposed in ASME Sec. VIII Div. 1: A Comparative Study of Various Codes of Constructions Ameya Mathkar, Shyam Gopalakrishnan, and Sujay S. Pathre	5
PVP2022-84771 V001T01A086 Comparison of Stresses in Flexible Shell Element Expansion Joint of a Heat Exchanger for Code Application When Made of Multiple Flexible Shell Element Ameya Mathkar, Shyam Gopalakrishnan, and Sujay S. Pathre Pathre	3