Proceedings of ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference

(IDETC-CIE2022)

Volume 3A

48th Design Automation Conference (DAC)

August 14-17, 2022 St. Louis, Missouri

Conference Sponsors Design Engineering Division

Computers and Information in Engineering Division

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS

Two Park Avenue * New York, N.Y. 10016

© 2022, The American Society of Mechanical Engineers, 2 Park Avenue, New York, NY 10016, USA (www.asme.org)

All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

INFORMATION CONTAINED IN THIS WORK HAS BEEN OBTAINED BY THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS FROM SOURCES BELIEVED TO BE RELIABLE. HOWEVER, NEITHER ASME NOR ITS AUTHORS OR EDITORS GUARANTEE THE ACCURACY OR COMPLETENESS OF ANY INFORMATION PUBLISHED IN THIS WORK. NEITHER ASME NOR ITS AUTHORS AND EDITORS SHALL BE RESPONSIBLE FOR ANY ERRORS, OMISSIONS, OR DAMAGES ARISING OUT OF THE USE OF THIS INFORMATION. THE WORK IS PUBLISHED WITH THE UNDERSTANDING THAT ASME AND ITS AUTHORS AND EDITORS ARE SUPPLYING INFORMATION BUT ARE NOT ATTEMPTING TO RENDER ENGINEERING OR OTHER PROFESSIONAL SERVICES. IF SUCH ENGINEERING OR PROFESSIONAL SERVICES ARE REQUIRED, THE ASSISTANCE OF AN APPROPRIATE PROFESSIONAL SHOULD BE SOUGHT.

ASME shall not be responsible for statements or opinions advanced in papers or . . . printed in its publications (B7.1.3). Statement from the Bylaws.

For authorization to photocopy material for internal or personal use under those circumstances not falling within the fair use provisions of the Copyright Act, contact the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923, tel: 978-750-8400, www.copyright.com.

Requests for special permission or bulk reproduction should be addressed to the ASME Publishing Department, or submitted online at: https://www.asme.org/publications-submissions/journals/information-for-authors/journalguidelines/rights-and-permissions

ISBN: 978-0-7918-8622-9

CONTENTS

Proceedings of ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Volume 3A

48TH DESIGN AUTOMATION CONFERENCE (DAC)

Artificial Intelligence and Machine Learning for Challenging Real-World Problems in Design Automation

DETC2022-88049	D1
DETC2022-89164	02
DETC2022-90046	03
DETC2022-90065	04
DETC2022-90068)5
Computational Design for Biomedical Applications	
DETC2022-89854	06
DETC2022-90582	07
Control Co-Design	
DETC2022-89507	80
DETC2022-89957	09
A Constraint-Handling Technique for Parametric Optimization and Control Co-Design Ying-Kuan Tsai and Richard J. Malak, Jr.	

DETC2022-90021 Control Co-Design Optimization of Natural Gas Power Plants With Carbon Capture and Thermal Storage <i>Roberto Vercellino, Ethan Markey, Braden J. Limb, Maxwell Pisciotta, Joseph</i> <i>Huyett, Shane Garland, Todd Bandhauer, Jason C. Quinn, Peter Psarras, and</i> <i>Daniel R. Herber</i>	V03AT03A010
Data-Driven Design	
DETC2022-87653 t-METASET: Task-Aware Generation of Metamaterial Datasets by Diversity-Based Active Learning Doksoo Lee, Yu-Chin Chan, Wei (Wayne) Chen, Liwei Wang, and Wei Chen	V03AT03A011
DETC2022-88548 Classification-Directed Conceptual Structure Design Based on Topology Optimization, Deep Clustering, and Logistic Regression <i>Ryo Tsumoto, Kikuo Fujita, Yutaka Nomaguchi, Shintaro Yamasaki, and Kentaro</i> <i>Yaji</i>	V03AT03A012
DETC2022-89798 LINKS: A Dataset of a Hundred Million Planar Linkage Mechanisms for Data-Driven Kinematic Design <i>Amin Heyrani Nobari, Akash Srivastava, Dan Gutfreund, and Faez Ahmed</i>	V03AT03A013
DETC2022-89895 Data Driven Integrated Design Space Exploration Using iSOM Rashmi Rama Sushil, Mathew Baby, Gehendra Sharma, Anand Balu Nellippallil, and Palaniappan Ramu	V03AT03A014
DETC2022-90000 Customer Journey Mapping Using Stochastic Models <i>Yiqing Ding and Erin F. MacDonald</i>	V03AT03A015
DETC2022-91043 Data Augmentation of Engineering Drawings for Data-Driven Component Segmentation Wentai Zhang, Quan Chen, Can Koz, Liuyue Xie, Amit Regmi, Soji Yamakawa, Tomotake Furuhata, Kenii Shimada, and Levent Burak Kara	V03AT03A016
DETC2022-91209 Scalar Field Prediction on Topologically-Varying Graphs Using Spectral Shape Encoding <i>Kevin Ferguson, James Hardin, Andrew Gillman, and Levent Burak Kara</i>	V03AT03A017
Decision Making in Design	
DETC2022-89949 Does Narrative Play a Role in Engineering Decision-Making and Design? A Preliminary Study Scott Ferguson and Kenneth M. Bryden	V03AT03A018
DETC2022-90686 Aircraft Maintenance Schedule Design Optimization During a Pandemic <i>Elizabeth Jordan and Shapour Azarm</i>	V03AT03A019
DETC2022-90836 An Information-Decision Framework to Support Cooperative Decision Making in the Top-Down Design of Cyber-Physical-Manufacturing Systems	V03AT03A020

Mathew Baby and Anand Balu Nellippallil

Design and Optimization of Energy Systems

DETC2022-89619 Optimizing Intentional Islanding Design Strategies for Enhanced Failure Resilience of Power Systems <i>Jiaxin Wu, Xin Chen, Jie Zhang, and Pingfeng Wang</i>	V03AT03A021
DETC2022-89621 Harnessing Operational Flexibility From Power to Hydrogen in a Grid-Tied Integrated Energy System Jubeyer Rahman, Roshni Anna Jacob, and Jie Zhang	V03AT03A022
DETC2022-90227 Multidisciplinary Optimization to Reduce Cost and Power Variation of a Wave Energy Converter <i>Rebecca McCabe, Olivia Murphy, and Maha Haji</i>	V03AT03A023
DETC2022-90496 Reliability-Based Optimization of Offshore Salt Caverns for CO2 Abatement <i>Zhuoyuan Zheng, Yanwen Xu, Bayan Hamdan, Sara Kohtz, Pedro V. M. Costa,</i> <i>Alvaro M. Costa, Carlos H. B. Morais, and Pingfeng Wang</i>	V03AT03A024
DETC2022-90705 Exploring How the Heterogeneity of Building Types in Community Microgrids Impact Their Value Proposition <i>Philip Odonkor</i>	V03AT03A025
Design for Additive Manufacturing	
DETC2022-88327 Direct 4D Printing of a Deployable Polymer Wave Spring <i>Joël N. Chapuis, Andrin M. Widmer, and Kristina Shea</i>	V03AT03A026
DETC2022-89054 Automatic Shape Modification for Self-Supporting Structures in Additive Manufacturing <i>Jiangce Chen, Matt Patterson, Amir M, Mirzendehdel, and Morad Behandish</i>	V03AT03A027
DETC2022-89091 Deep Ensembles for Modeling Uncertain Phase Constraints In Compositionally Graded Alloy Design Marshall Allen, Raymundo Arroyave, and Richard Malak	V03AT03A028
DETC2022-90050 Concurrent Build Direction, Part Segmentation, and Topology Optimization for Additive Manufacturing Using Neural Networks Hongrui Chen, Kate S. Whitefoot, and Levent Burak Kara	V03AT03A029
DETC2022-90058 Toward a Comprehensive Framework for Preliminary Design Evaluation in Additive Manufacturing Alexander Cayley, Jayant Mathur, and Nicholas Meisel	V03AT03A030
DETC2022-90246 Empirical Characterization of Lattice, Spring, and Non-Assembly Mechanisms Fabricated With Nylon Polymer Powder Bed Fusion Nava Raj Khatri, Johnathan A. Smith, and Paul F. Egan	V03AT03A031
DETC2022-90260	V03AT03A032

DETC2022-90533	3AT03A033
Xuan Liang, Lisha White, Jonathan Cagan, Anthony D. Rollett, and Yongjie Jessica Zhang	
DETC2022-91101	3AT03A034
Design for Market Systems	
DETC2022-89405	3AT03A035
Design for Resilience and Failure Recovery	
DETC2022-89132	3AT03A036
Amir Behjat, Roman Ibrahimov, Ali Lenjani, Aaron Barket, Kathleen Martinus, Amin Maghareh, Dawn Whitaker, Illias Bilionis, and Shirley Dyke	
DETC2022-89613	3AT03A037
DETC2022-89622	3AT03A038
DETC2022-89654	3AT03A039
DETC2022-90072	3AT03A040
Daniel Hulse and Lukman Irshad	
DETC2022-90252	3AT03A041
Venkat Nemani, Adam Thelen, Chao Hu, and Steve Daining	
Design of Autonomous Systems	
DETC2022-89615	3AT03A042
DETC2022-89760	3AT03A043
Long-Range Risk-Aware Path Planning for Autonomous Ships in Complex and Dynamic Environments <i>Chuanhui Hu and Yan Jin</i>	

Design of Engineering Materials and Structures

DETC2022-87728 Automated Design of Packaging Cushions for Withstanding Drop Tests David So, Lisa Hildebrand, and Matthew I. Campbell	V03AT03A044
DETC2022-89374 Periodic Composite Function-Based Designing of Microstructures With Programmable Poisson Ratio <i>Yilong Zhang, Yuxuan Du, Ye Qiao, Shu Wang, and Cunfu Wang</i>	V03AT03A045
DETC2022-89652 Design of Three-Dimensional Bi-Continuous Silicon Based Electrode Materials for High Energy Density Batteries <i>Zhuoyuan Zheng, Zheng Liu, Pingfeng Wang, and Yumeng Li</i>	V03AT03A046
DETC2022-89722 Efficient Design of Acoustic Metamaterials With Design Domains of Variable Size Using Graph Neural Networks <i>Tyler Wiest, Carolyn Conner Seepersad, and Michael Haberman</i>	V03AT03A047
DETC2022-89932 Phononic Metamaterial Design via Transfer Learning-Based Topology Optimization Framework <i>Zihan Wang, Ran Zhuang, Weikang Xian, Jiawei Tian, Ying Li, Shikui Chen, and</i> <i>Hongyi Xu</i>	V03AT03A048
DETC2022-90177 Descriptor Aided Bayesian Optimization for Mixed Variable Materials Design With High Dimensional Qualitative Variables <i>Akshay Iyer, Suraj Yerramilli, James M. Rondinelli, Daniel W. Apley, and Wei Chen</i>	V03AT03A049
DETC2022-90726 Level-Set-Based Shape & Topology Optimization of Thermal Cloaks Xiaoqiang Xu and Shikui Chen	V03AT03A050
DETC2022-91076 Latent Variable Representations for Interactive Structural Design Exploration <i>Sofia Valdez, Nicholas Rodriguez, and Carolyn Seepersad</i>	V03AT03A051