Proceedings of ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference

(IDETC-CIE2022)

Volume 3B

48th Design Automation Conference (DAC)

August 14-17, 2022 St. Louis, Missouri

Conference Sponsors Design Engineering Division

Computers and Information in Engineering Division

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS

Two Park Avenue * New York, N.Y. 10016

© 2022, The American Society of Mechanical Engineers, 2 Park Avenue, New York, NY 10016, USA (www.asme.org)

All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

INFORMATION CONTAINED IN THIS WORK HAS BEEN OBTAINED BY THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS FROM SOURCES BELIEVED TO BE RELIABLE. HOWEVER, NEITHER ASME NOR ITS AUTHORS OR EDITORS GUARANTEE THE ACCURACY OR COMPLETENESS OF ANY INFORMATION PUBLISHED IN THIS WORK. NEITHER ASME NOR ITS AUTHORS AND EDITORS SHALL BE RESPONSIBLE FOR ANY ERRORS, OMISSIONS, OR DAMAGES ARISING OUT OF THE USE OF THIS INFORMATION. THE WORK IS PUBLISHED WITH THE UNDERSTANDING THAT ASME AND ITS AUTHORS AND EDITORS ARE SUPPLYING INFORMATION BUT ARE NOT ATTEMPTING TO RENDER ENGINEERING OR OTHER PROFESSIONAL SERVICES. IF SUCH ENGINEERING OR PROFESSIONAL SERVICES ARE REQUIRED, THE ASSISTANCE OF AN APPROPRIATE PROFESSIONAL SHOULD BE SOUGHT.

ASME shall not be responsible for statements or opinions advanced in papers or . . . printed in its publications (B7.1.3). Statement from the Bylaws.

For authorization to photocopy material for internal or personal use under those circumstances not falling within the fair use provisions of the Copyright Act, contact the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923, tel: 978-750-8400, www.copyright.com.

Requests for special permission or bulk reproduction should be addressed to the ASME Publishing Department, or submitted online at: https://www.asme.org/publications-submissions/journals/information-for-authors/journalguidelines/rights-and-permissions

ISBN: 978-0-7918-8623-6

CONTENTS

Proceedings of ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Volume 3B

48TH DESIGN AUTOMATION CONFERENCE (DAC)

Design Under Uncertainty

Uncertainty Quantification of Physics-Based Label-Free Deep Learning and Probabilistic Prediction of Extreme Events <i>Huiru Li, Jianhua Yin, and Xiaoping Du</i>	V03BT03A001
DETC2022-89492 Envelope Method for Time- and Space-Dependent Reliability-Based Design Hao Wu and Xiaoping Du	V03BT03A002
DETC2022-89776 A New Framework for Efficient Sequential Sampling-Based RBDO Using Space Mapping Jeong Woo Park and Ikjin Lee	V03BT03A003
DETC2022-89928 Mobility Prediction of Off-Road Ground Vehicles Using a Dynamic Ensemble of NARX Models Yixuan Liu, Dakota Barthlow, Zissimos P. Mourelatos, David Gorsich, Amandeep Singh, Jice Zeng, and Zhen Hu	V03BT03A004
Engineering for Global Development	
DETC2022-89713	V03BT03A005
Jonathan T. Bessette and Amos G. Winter	
The Need for Desalination in Humanitarian Crises Jonathan T. Bessette and Amos G. Winter DETC2022-90001 Exploring the Usefulness of Agent-Based Product Social Impact Modeling Through a Systematic Literature Review Christopher S. Mabey, Christopher A. Mattson, and John L. Salmon	V03BT03A006
 The Need for Desalination in Humanitarian Crises Jonathan T. Bessette and Amos G. Winter DETC2022-90001 Exploring the Usefulness of Agent-Based Product Social Impact Modeling Through a Systematic Literature Review <i>Christopher S. Mabey, Christopher A. Mattson, and John L. Salmon</i> DETC2022-90029 Am I Right? Investigating the Influence of Trait Empathy and Attitudes Towards Sustainability on the Accuracy of Concept Evaluations in Sustainable Design <i>Mohammad Alsager Alzayed, Elizabeth M. Starkey, Sarah C. Ritter, and Rohan</i> <i>Prabhu</i> 	V03BT03A006 V03BT03A007

Evolving Cyber-Physical-Social Systems

DETC2022-89892 A Design Framework for Evolving Cyber-Physical-Social System (CPSS) Based on Force Field Ziqing Zhou, Yanwei Sun, Chun Ouyang, Zhongxue Gan, and Zhenjun Ming	/03BT03A009
DETC2022-90161	/03BT03A010
DETC2022-90863	/03BT03A011
DETC2022-90958 Designing Privacy Risk Frameworks for Evolving Cyber-Physical Social Systems: Knowledge Gaps Illuminated by the Case of Autonomous Vehicles and Bystander Privacy <i>Vivek Rao, Ankita Joshi, Soo Min Kang, Susan Lin, (Erin) Junghyun Song, Drew</i> <i>Miller, Kosa Goucher-Lambert, and Alice Agogino</i>	/03BT03A012
DETC2022-91265	/03BT03A013
DETC2022-91277 Digital Engineering Platform for Synergistic Decision-Making In Manufacturing Plant Operations: Research Questions <i>B. P. Gautham, Natarajan Swaminathan, Rishabh Shukla, Trinath Gaduparthi, and</i> <i>Chetan Malhotra</i>	/03BT03A014
Geometric Modeling and Algorithms for Design and Manufacturing	
DETC2022-90110	V03BT03A015
DETC2022-90145	V03BT03A016
Human-Artificial Intelligence Collaboration in Engineering System Design	
DETC2022-88535	V03BT03A017
DETC2022-88609 A Real-Time Artificial Intelligence Process Manager for Engineering Design Joshua T. Gyory, Nicolás F. Soria Zurita, Jay D. Martin, Corey M. Balon, Christopher McComb, Kenneth Kotovsky, and Jonathan Cagan	√03BT03A018
DETC2022-89207	/03BT03A019

DETC2022-90477	020
DETC2022-90770	021
DETC2022-91059	022
Metamodel-Based Design Optimization	
DETC2022-88163	023
DETC2022-88567	024
DETC2022-89655	025
DETC2022-89859	D26
DETC2022-90132 V03BT03A0 Conceptual Design of Cellular Auxetic Systems With Passive Adaptation to Loading Joshua Prendergast, Manaswin Oddiraju, Mostafa Nouh, and Souma Chowdhury	027
DETC2022-91196	D28
Multi-Fidelity Modeling Under Uncertainty	
DETC2022-89511	029
DETC2022-90115	030
DETC2022-90163	031
DETC2022-90233	032

Multidisciplinary Design Optimization, Multiobjective Optimization, and Sensitivity Analysis

DETC2022-89001 Experimental Investigation of Topology-Optimized Beams With Isotropic and Anisotropic Base Material Assumptions Hajin Kim and Josephine V. Carstensen	V03BT03A033
DETC2022-89491 Optimization of Self-Heated Vacuum Membrane Distillation Using Response Surface Methodology Shaneza Fatma Rahmadhanty, Subrahmanya T. M., Wei-Song Hung, and Po Ting Lin	V03BT03A034
DETC2022-89598 Holistic Optimal Design of Face-Milled Hypoid Gearsets Eugeniu Grabovic, Alessio Artoni, and Marco Gabiccini	V03BT03A035
DETC2022-89797 Ship Deck Object Placement Optimization Using a Many-Objective Bilevel Approach <i>Noah J. Bagazinski and Faez Ahmed</i>	V03BT03A036
DETC2022-90601 Topology Optimization of Permanent Magnets for Generators Using Level Set Methods	V03BT03A037
Jiawei Tian, Ran Zhuang, Juan Cilia, Arvind Rangarajan, Fang Luo, Jon Longtin, and Shikui Chen DETC2022-91112	V03BT03A038
Bi-Objective Surrogate Feasibility Robust Design Optimization Utilizing Expected Non-Dominated Improvement With Relaxation <i>Randall J. Kania and Shapour Azarm</i>	
DETC2022-91343 Multi-Objective Bayesian Optimization Supported by Gaussian Process Classifiers and Conditional Probabilities <i>Homero Valladares and Andres Tovar</i>	V03BT03A039
Novel AI or ML Frameworks for Design or Systems Science	
DETC2022-88971 Automated and Customized CAD Drawings by Utilizing Machine Learning Algorithms: A Case Study Javier Villena Toro and Mehdi Tarkian	V03BT03A040
DETC2022-89318 Does Design Proficiency Matter in Engineering Design Teams? A Computational Model and Experiments Ethan Brownell Jonathan Cagan and Kenneth Kotovsky	V03BT03A041
DETC2022-89707 Hierarchical Deep Generative Models for Design Under Free-Form Geometric Uncertainty <i>Wei (Wayne) Chen. Doksoo Lee. Oluwasevi Balogun. and Wei Chen</i>	V03BT03A042
DETC2022-89740 Self Learning Design Agent (SLDA): Enabling Deep Learning and Tree Search in Complex Action Spaces Ayush Raina, Jonathan Cagan, and Christopher McComb	V03BT03A043
DETC2022-89997 Generative Adversarial Design Analysis of Non-Convexity in Topology Optimization Nathan Hertlein, Andrew Gillman, and Philip R. Buskohl	V03BT03A044

DETC2022-90123 A Scalable Graph Learning Approach to Capacitated Vehicle Routing Problem Using Capsule Networks and Attention Mechanism Steve Paul and Souma Chowdhury	V03BT03A045
DETC2022-91344 Design Target Achievement Index: A Differentiable Metric to Enhance Deep Generative Models in Multi-Objective Inverse Design Lyle Regenwetter and Faez Ahmed	V03BT03A046
Platform Architecture and Product Family Design	
DETC2022-90899	V03BT03A047
DETC2022-91348 Requirements Mapping of a High-Powered Rocket System to Explain Solution Similarities Across Generations <i>Lindsey Jacobson and Scott Ferguson</i>	V03BT03A048
Special Session with DFMLC: Modeling and Optimization for Sustainable Design and Manufacturing	3