Proceedings of 2022 14th International Pipeline Conference

(IPC2022)

Volume 2

September 26-30, 2022 Calgary, Alberta, Canada

> Conference Sponsor Pipeline Division

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS

Two Park Avenue * New York, N.Y. 10016

© 2022, The American Society of Mechanical Engineers, 2 Park Avenue, New York, NY 10016, USA (www.asme.org)

All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

INFORMATION CONTAINED IN THIS WORK HAS BEEN OBTAINED BY THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS FROM SOURCES BELIEVED TO BE RELIABLE. HOWEVER, NEITHER ASME NOR ITS AUTHORS OR EDITORS GUARANTEE THE ACCURACY OR COMPLETENESS OF ANY INFORMATION PUBLISHED IN THIS WORK. NEITHER ASME NOR ITS AUTHORS AND EDITORS SHALL BE RESPONSIBLE FOR ANY ERRORS, OMISSIONS, OR DAMAGES ARISING OUT OF THE USE OF THIS INFORMATION. THE WORK IS PUBLISHED WITH THE UNDERSTANDING THAT ASME AND ITS AUTHORS AND EDITORS ARE SUPPLYING INFORMATION BUT ARE NOT ATTEMPTING TO RENDER ENGINEERING OR OTHER PROFESSIONAL SERVICES. IF SUCH ENGINEERING OR PROFESSIONAL SERVICES ARE REQUIRED, THE ASSISTANCE OF AN APPROPRIATE PROFESSIONAL SHOULD BE SOUGHT.

ASME shall not be responsible for statements or opinions advanced in papers or . . . printed in its publications (B7.1.3). Statement from the Bylaws.

For authorization to photocopy material for internal or personal use under those circumstances not falling within the fair use provisions of the Copyright Act, contact the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923, tel: 978-750-8400, www.copyright.com.

Requests for special permission or bulk reproduction should be addressed to the ASME Publishing Department, or submitted online at: https://www.asme.org/publications-submissions/journals/information-for-authors/journalguidelines/rights-and-permissions

ISBN: 978-0-7918-8657-1

CONTENTS

Pipeline and Facilities Integrity

Data Analytics and Incident Learnings

Use of Inertial Measurement Unit In-Line Inspection Data to Support Code Stress Compliance and Integrity Evaluations Jonathan Prescott, Curtis Patterson, and Arfeen Najeeb	IPC2022-87046	1
Probabilistic Flaw Growth Rate Estimates Using Multiple Inline Inspection Tool Run Data Analyses Colin Scott and Kregg Philpott	IPC2022-87054	9
The Why and How of Data Integration for Integrity Management Pursuant to API TR 1178	IPC2022-87064	19
Jackie Smith, Cesar Espinoza, and Karen Collins		
Overcoming Challenges for Quantitative Risk Modeling Using Machine Learned Data Correlations and Predictive Modeling Stephen F. Biagiotti, Jr, Dan Williams, Sergiy Kondratyuk, and Brett Johnson	IPC2022-87236	26
Structured, Systematic Threat Based Approach to Evaluate and Improve Data Quality to Facilitate Digital Transformation Pushpendra Tomar, Betsy Kruse, Samah Hasan, and Sergiy Kondratyuk	IPC2022-87872	36
Facilities Integrity and Mitigation		
Reliability Analysis of Dented Pipelines in the Absence of Deformation Profiles Josiah SooTot, Katie Killeen, Keng Yap, and Sherif Hassanien	IPC2022-86762	44
Explained: Ultrasonic Self-Propelled Robotic Inspection Solution for Unpiggable Dock Line <i>Corey Richards, Cedric Bolduc, and Børge Hamnes</i>	IPC2022-86889	51
An Improved Axial Surface Crack Model to Predict Crack Growth and Burst Pressures Based on FE Analyses For J _{plastic} And J-R Curve Methodology <i>Gery Wilkowski, Jeong K. Hong, Frederick W. Brust, and Yunior Hioe</i>	IPC2022-86904	63
A Comprehensive New Look at Type B Sleeves David B. Futch, Chantz Denowh, and Josh Wilson	IPC2022-87078	77
Squeeze the Crack Out of It - With Type A Compression Sleeves David B. Futch, Atul Ganpatye, and Josh Wilson	IPC2022-87079	84
Use of Carbon Composite Repair Technologies to Reinforce Crack-Like Flaws in High Pressure Pipelines David B. Futch, Sergio Limon, and Chris Alexander	IPC2022-87282	91
Don't Crack Up - Composite Repair of SSWC David B. Futch, Christopher De Leon, and Casey Whalen	IPC2022-87288	98

Implementation of API 1183 Recommended Practice for Reliability-Based Assessment of Dents in Liquid Pipelines <i>Muntaseer Kainat, Amandeep Virk, Nader Yoosef-Ghodsi, and Steven Bott</i>	IPC2022-87320	103
Initial Experimental and Analytical Efforts to Predict Sustained Load Crack Growth During a Hydrotest and Subsequent Fatigue Crack Growth During Pressure Cycling Yunior Hioe, Fabian Orth, Gery Wilkowski, Frederick Brust, and Ken Bagnoli	IPC2022-87354	113
Experimental Study of Natural Gas Hydrate Formation Kinetics and Inhibition in Brine and Water <i>Farzan Sahari Moghaddam, Maziyar Mahmoodi, Edison Sripal, Majid A. Abdi,</i> <i>and Lesley James</i>	IPC2022-88861	121
Feature Assessment Case Studies and Assessment Model Innovations		
A Case Study Applying Gouge Classification to Mechanical Damage Defects Matt Romney and Dane Burden	IPC2022-84801	130
Improvements to Strain Hardening Exponent and the Implications to Failure Pressure Predictions Emily Brady, Jeffrey Kornuta, Joel Anderson, Adam Steiner, and Peter Veloo	IPC2022-86041	137
Risk-Based Data-Driven Optimization of Pipeline Inspection Interval Josiah SooTot, Fernando Oviedo, Guanbo Zheng, and Keng Yap	IPC2022-86761	144
Influence of Strain Hardening Model on the CorLAS™ Model for Cracked Pipelines Xinfang Zhang, Meng Lin, Muntaseer Kainat, Nader Yoosef-Ghodsi, Juliana Y. Leung, and Samer Adeeb	IPC2022-86856	150
Assessing Internal Pitting Corrosion With Encoded Ultrasonic Scanning Joe Chen, Yanping Li, Trevor Place, Axel Aulin, and Logan Galbraith	IPC2022-86884	162
Preparation and Performance Evaluation of Erosion Resistant Lining of Bimetallic Composite Pipe <i>Jianwei Dong, Deguo Wang, and Yanbao Guo</i>	IPC2022-86912	171
Progress of Assessment Model Development for Determining Remaining Strength of Corroded Pipelines Xian-Kui Zhu and Bruce Wiersma	IPC2022-86922	175
Not All Data Is Good Data: The Challenges of Using Machine Learning With ILI Adrian Belanger, Dane Burden, and Paul Dalfonso	IPC2022-86934	189
Research on an Automated Process to Automatically Correlate ILI Features With NDT Laser Scans Ron Brush, Pat Westrick, Wei Xiang, Colin Dooley, and Terry Huang	IPC2022-86946	198
Some Practical Benefits of Detailed Forensic Analysis Brian Leis, Yong-Yi Wang, Amin Eshraghi, Steve Rapp, and Gary Vervake	IPC2022-87028	207
Estimating Measurement Performance With Truncated Data Sets Jason Skow, Joseph W. Krynicki, Alex Fraser, and Gustavo Gonzalez	IPC2022-87060	217

Measurement of Flaw Growth in Electric Resistance Welded Pipe Seams From Multiple Pressure Tests and Hold Time and Implications on Managing Pressure Reversals in Hydrostatic Tests Dave Warman, Dan Jia, Yong-Yi Wang, Mike Bongiovi, and Chad Destigter	IPC2022-87067	225
An Automatic Dent Assessment Tool Using Finite Element Method Ji Bao, Shenwei Zhang, Billy Zhang, Rick Wang, and Ken Zhang	IPC2022-87098	241
Using Advanced Probability of Exceedance Methods for Defining Remediation Options <i>Thomas Bubenik, Benjamin Hanna, William Harper, and Matt Ellinger</i>	IPC2022-87108	250
Chasing Ghosts: An Integrative Approach to Properly Qualify a Pipeline Threat Michael Turnquist	IPC2022-87120	260
Key Considerations for Elastic Finite-Element Modeling of Pipeline Dents for Fatigue Assessments <i>Ryan Sager, Fernando Curiel, and Chris Holliday</i>	IPC2022-87142	267
Gaps in the Current Strain-Based Dent Assessment Rick Wang and Ken Zhang	IPC2022-87165	284
Enhancing Results of Ultra-High-Resolution Axial Magnetic Flux Leakage (MFL-A Ultra) Inspection Data Utilizing Finite-Element Modeling (FEM) Simulations Edgar Schneider, Johannes Spille, Jeff Fleming, Ziad Saad, and Kevin Siggers	IPC2022-87194	296
A More Efficient Effective Area Method Algorithm for Corrosion Assessment (Faster RSTRENG) Jason Yan, Dongliang Lu, Ian Khou, and Shenwei Zhang	IPC2022-87259	301
Review of Hydrogen Induced Cracking of Mid-Wall Defects Tara Podnar McMahan, Thomas Bubenik, B. Nikki Padgett, Husain Al-Muslim, John Beavers, and Satish Kulkarni	IPC2022-87275	311
The State of Dent Screening and Shape-Based Assessments: Discrepancies to Consider <i>Steven J. Polasik, Shanshan Wu, Joseph P. Bratton, Rhett Dotson, and Ryan</i> <i>Sager</i>	IPC2022-87301	321
Threat Assessment Considerations for Vintage Pipes Benjamin Hanna, Thomas Bubenik, and Bassam Saad	IPC2022-87302	327
Understanding Principal Drivers to Burst Pressure and Local Deformation of Pipes With SCC Colonies Yong-Yi Wang, Alex Wang, Brian Leis, Steven C. Rapp, and Gary Vervake	IPC2022-87338	337
Recoating SCC on Gas Pipelines Without Grinding Ryan Milligan, Noelle Easter Co, Ming Gao, Ravi Krishnamurthy, Richard Kania, Gabriela Rosca, and Elvis Sanjuan	IPC2022-87340	347
A Comprehensive Fitness for Service Engineering Assessment of Gas Pipeline Dents	IPC2022-87360	359

Suborno Debnath, Kshama Roy, Robert Wickie, and Alireza Kohandehghan

Utilization of a Probabilistic Function to Describe the Performance of In-Line Crack Inspection Systems and a Possible Application in Hydrogen Service <i>Timo Moritz, Marc Baumeister, and Thomas Beuker</i>	IPC2022-87668	371
A Study on the Conservatism of the Dent Screening Criteria in the Canadian Standards Association (CSA) Z662:19 Oil and Gas Pipeline Systems Standard <i>Krystin Cousart and Chris Holliday</i>	IPC2022-88266	378
Challenging Inspection Methodologies and Benefits – Recommended Scenarios for UT, MFL, and Robotics <i>Mick Collins, Rod Lee, Calvin Vasileff, and Michael Kobelak</i>	IPC2022-88267	389
Managing the Threat of Corrosion on the Long Seam Christopher Davies, Ranine Nasreddine, and Simon Slater	IPC2022-88364	396
Integrity Program Innovations/Challenges		
Pig Sweep®: Nanoparticles Transform Pipeline Cleaning & Integrity Management Justin Clapper, George Williamson, Kyle Pearson, and Bud Allred	IPC2022-86892	406
Development of a Pressure Equipment Integrity Management Program in a Multi- Jurisdictional Liquids Pipeline Environment <i>Touqeer Sohail and Katarina Bohaichuk</i>	IPC2022-86901	411
Advancement of Probabilistic Analysis of Seam Weld Cracking Integrity Management Jing Ma, Kenneth E. Bagnoli, Neeraj S. Thirumalai, Joseph W. Krynicki, Zachary D. Cater-Cyker, and Gus Gonzalez	IPC2022-86993	418
Assured Utilization of Vintage Pipelines Through Effective Pressure Fluctuation Management Senhat Al-Otaibi and Husain Al-Muslim	IPC2022-87009	426
Modification of Existing Pipeline Corrosion Assessment Methods for Combined Internal Pressure and Compressive Loading - An Update <i>Christopher Owens, Angus Patterson, Arlene Arias, Alex Brett, and Andy</i> <i>Russell</i>	IPC2022-87090	430
Comparison of Pressure Decay Models for Liquid Pipelines Shenwei Zhang, Terry Huang, Colin Dooley, Roger Lai, and Brett Conrad	IPC2022-87166	439
Establishing Corrosion Growth Rates Based on MFL-C vs. MFL In-Line Inspection Run-to-Run Comparisons Eric Graf, Matthew Ellinger, William Harper, Thomas Bubenik, Stacy Hickey, and Pamela Moreno	IPC2022-87272	447
Fatigue Threat to Natural Gas Pipelines: An Analysis Approach Brett Davis, Alex Hudgins, Yash Bhargava, Brian Patrick, and Konrad Myca	IPC2022-87283	457
Role of Axial Stress in Pipeline Integrity Management Ken Zhang, Ron Chune, Rick Wang, and Richard Kania	IPC2022-87327	468

Technology Development

Literature Review of Repair Technologies for Wrinkled Pipelines Tyler Johnson, Curtis Mokry, Chris Apps, Nima Parsibenehkohal, and Matthew Henderson	IPC2022-86760	482
Optimizing Operator Systems Through the Use of Flexible Composite Pipe Alex Nemeth, Debra Czapski, and Chris Alexander	IPC2022-86941	493
Advanced Non-Destructive Methods for Defect Characterization Under Coating for In-Service Storage Tanks <i>Touqeer Sohail, Katarina Bohaichuk, Devin Eley, and Mike Hill</i>	IPC2022-87151	503
A Transparent ASME B31.8-Based Strain Assessment Method Using 3D Measurement of Dent Morphology Shenwei Zhang, Billy Zhang, and Rick Wang	IPC2022-87168	510
Machine Learning Tools to Predict the Burst Capacity of Pipelines Containing Dent- Gouges Ziming He and Wenxing Zhou	IPC2022-87176	522
Development of a Near-Neutral pH Stress Corrosion Cracking Growth Model for Pipelines Using Machine Learning Algorithms Haotian Sun, Wenxing Zhou, and Jidong Kang	IPC2022-87207	530
Pipeline Defect Detection and Fine-Scale Reconstruction From 3-D MFL Signal Analysis Using Object Detection and Physics-Constrained Machine Learning <i>W. Steven Rosenthal, Stephen Westwood, and Kayte Denslow</i>	IPC2022-87313	540
Engineering Critical Assessment of Dents and Dents With Cracks Using Inline Inspection Data Shree Krishna	IPC2022-87336	547
ILI System Performance Trials for Mechanical Damage Sanjay Tiku, Arnav Rana, Binoy John, Aaron Dinovitzer, and Mark Piazza	IPC2022-87344	556
Enhancement of Mechanical Damage Crack Evaluation Arnav Rana, Sanjay Tiku, Mark Piazza, and Tim Burns	IPC2022-87345	565
Long Seam Characterization by Means of a Phased Array Based Inline Inspection Victor Haro, Katja Traeumner, Christina Jung, Gerhard Kopp, and M. Santiago Urrea	IPC2022-87416	577
Inline-Inspection Crack Detection for Gas Pipelines Using a Novel Technology Magne Aanes, Michael Haas, Kenneth Kirkeng Andersen, and Andreas Sørbrøden Talberg	IPC2022-87663	585
New Approaches in Utilizing Eddy Current Testing to Address Pipeline Inline Inspection Requirement Sylvain Cornu, Raymond Karé, Ahmed Sweedy, and Michael Sirois	IPC2022-87676	591
Phased Array Shot Scenario and Shot Sequence Optimization for Crack Detection Inline Inspection Tools <i>Michael Haas, Henrik Witte, Gerhard Kopp, and Peter Haberl</i>	IPC2022-87765	601
Know Your Enemy – Improvements in Managing the Threat of Hard Spots Khanh Tran, Simon Slater, and Jason Edwards	IPC2022-88362	611

Managing Rooftopping: An In-Line Inspection Based Approach Brett Conrad, Gerhard Kopp, Ross Adamson, Tommy Mikalson, and Roger Lai