2023 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM 2023)

Boulder, Colorado, USA 10 – 14 January 2023

IEEE Catalog Number: CFP23USN-POD ISBN:

978-1-6654-7642-3

Copyright © 2023, U. S. National Committee for the International Union of Radio Science (USNC-URSI) All Rights Reserved

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP23USN-POD

 ISBN (Print-On-Demand):
 978-1-6654-7642-3

 ISBN (Online):
 978-1-946815-18-7

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: (845) 758-0400 Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

TABLE OF CONTENTS

B1*: ANTENNAS FOR PLANETARY EXPLORATION

B1*.1: DESIGN, DEVELOPMENT AND TESTING OF NASA'S DART RADIAL LINE SLOT ARRAY ANTENNA Matthew Bray, Johns Hopkins University Applied Physics Laboratory, United States
B1*.2: ADDITIVE MANUFACTURED ANTENNA FOR NASA'S INTERSTELLAR MAPPING AND
ACCELERATION PROBE (IMAP) Avinash Sharma, Carl Carpenter, Steve Szczesniak, Johns Hopkins University Applied Physics Laboratory, United States
B1*.3: DESIGN, DEVELOPMENT AND TESTING OF NASA'S EUROPA CLIPPER HIGH GAIN
ANTENNA Matthew Bray, Johns Hopkins University Applied Physics Laboratory, United States
B1*.4: ALL-METAL ANTENNAS FOR LUNAR EXPLORATION
B1*.5: LOW COST HIGH GAIN ANTENNA FABRICATION AND TESTING FOR MARS ESCAPADE
Katherine Wolff, Matthew Bray, John Schellhase, Christopher Haskins, Johns Hopkins University Applied Physics Laboratory, United States
F1: PROPAGATION AND REMOTE SENSING IN COMPLEX AND RANDOM MEDIA
F1.3: 3-D BISTATIC SCATTERING FROM FRACTAL SURFACE USING EXTENDED BOUNDARY
CONDITION METHOD Ming Li, Roger Lang, George Washington University, United States; Rafael Rincon, National Aeronautics and Space Administration, United States
F1.8: 3-LAYER RADAR SOUNDER MODEL FOR THE DETECTION OF BURIED ICE DEPOSITS
UNDER MARTIAN REGOLITH
Jiaxing Yang, Roger Lang, George Washington University, United States; Rafael Rincon, James Garvin, David Hollibaugh-Baker, NASA, United States
F1.10: A DISCONTINUOUS GALERKIN METHOD FOR SOLVING RADIATIVE TRANSFER
EQUATION WITH SEMITRANSPARENT BOUNDARY CONDITIONS
Md Ershadul Haque, Hang Wang, Reza Abedi, University of Tennessee Space Institute, United States; Saba Mudaliar, Air Force Research Laboratory, Wright-Patterson AFB, United States
B3*: LOW-PROFILE MILLIMETER-WAVE/TERAHERTZ ANTENNAS FOR MOBILE AND SPACE APPLICATIONS
B3*.2: A WIDEBAND DUAL LINEAR/CIRCULAR POLARIZED 64-ELEMENT PHASED ARRAY ANTENNA
FOR SATCOM APPLICATIONS Production of the Control of C
Rudraishwarya Banerjee, Satish K. Sharma, San Diego State University, United States; Seth W. Waldstein, James M. Downey, Bryan L. Schoenholz, Sarah M. Dever, James A. Nessel, NASA Glenn Research Center (GRC), United States

B3*.3: A NEW ANALYTICALLY DESIGNED UWB MICROSTRIP PATCH ANTENNA FOR FUTURE 5G
B3*.4: FLAT-PANEL WIDEBAND DUAL-CIRCULARLY POLARIZED 8X8 PHASED ARRAY ANTENNA
FOR SATCOM APPLICATIONS Sanghamitro Das, Satish K. Sharma, Rudraishwarya Banerjee, San Diego State University, United States; Seth W. Waldstein, James M. Downey, Bryan L. Schoenholz, Sarah M. Dever, James A. Nessel, NASA Glenn Research Center (GRC), United States
B3*.5: PROGRAMMABLE LIQUID MICROWAVE GRIN LENS 66 Jonathan Lundquist, Lauren Linkous, Erdem Topsakal, Virginia Commonwealth University, United States
B3*.8: RECONFIGURABLE THZ 1-D LEAKY-WAVE ANTENNA BASED ON LIQUID CRYSTALS AND A
B2*: NOVEL ELECTRICALLY SMALL ANTENNAS AND MATCHING NETWORKS
B2*.4: INCREASING THE EFFICIENCY-BANDWIDTH OF SMALL ANTENNAS BY COUPLING
B2*.5: NON-LTI ELECTRICALLY SMALL ANTENNA SYSTEM TO TRANSMIT AN ARBITRARY
K1: APPLICATIONS OF BIOELECTROMAGNETICS
K1.1: A STUDY ON APPLICABILITY OF USING FERROMAGNETIC MATERIALS TO REDUCE
B4: ANTENNA THEORY AND DESIGN
B4.2: INVESTIGATION OF FEEDING, SHAPING, AND STACKING TECHNIQUES ON CIRCULARLY
B4.5: A COMPARISON OF TWO METHODS FOR DEFINING THE REFLECTION COEFFICIENT
B4.6: TAILORED ELECTROMAGNETIC PROPERTIES OF LIGHT WEIGHT NANOCOMPOSITES State Duncan, United States Army, Armament Graduate School, United States; John Burpo, United States Military Academy, United States

POLARIZED ANTENNA ARRAY VIA HYBRID AND QUADRATURE COUPLING Alex Stutts, Anastasiia Rozhkova, Seiran Khaledian, Farhad Farzami, Danilo Erricolo, University of Illinois Chicago, United States
A1: ANTENNAS AND PROPAGATION
A1.3: A NOVEL GENETIC ALGORITHM BASED METHOD FOR MEASURING COMPLEX
A1.4: LAND USE AND THE CHARACTER OF URBAN RADIO-FREQUENCY NOISE IN A SMALL CITY
A1.5: CHARACTERIZATION OF ATMOSPHERIC VARIABILITY ON LONG RANGE 3.4 GHZ
K2*: WIRELESS POWER TRANSFER TECHNIQUES FOR BIOMEDICAL APPLICATIONS
K2*.2: EXTENDED RANGE WIRELESS POWER TRANSFER WITH INKJET PRINTED THIN-FILM
J2: NEW TELESCOPES, TECHNIQUES, AND TECHNOLOGIES I
J2.6: A WATER VAPOR RADIOMETER FOR THE CO MAPPING ARRAY PROJECT (COMAP)
BK1*: WEARABLE ANTENNAS FOR WIFI, IOT, AND 5G APPLICATIONS
BK1*.2: DESIGN AND SAR ANALYSIS OF A MEANDER SLOT ANTENNA FOR BACKSCATTERING
BK1*.5: TEXTILE PATCH ANTENNA SURROGATE-BASED OPTIMIZATION: KRIGING SURROGATE
BK1*.8: ULTRA THIN DUAL-POLARIZED FLEXIBLE CAVITY SLOT ANTENNA FOR THE 5G

E1: ELECTROMAGNETIC INTERFERENCE

E1.7: TEST AND ANALYSIS OF ELECTROMAGNETIC SENSITIVE EFFECTS IN RESOLVER
Peng Huang, Bing Li, Zongfei Zhou, Donglin Su, Beihang University, China; Weimin Li, China Academy of Launch Vehicle Technology, China
B5: NUMERICAL ELECTROMAGNETICS
B5.1: FREQUENCY BEAMFORMING-ENHANCED DBIM FOR LIMITED-APERTURE QUANTITATIVE
B5.2: SPECTRAL RECURSIVE APPROACH TO THE TIME-DOMAIN INVERSE KERNEL
B5.4: SIMULATING A COMPUTER-GENERATED WAVEGUIDE HOLOGRAM SCATTERING
H4*: HELIOSPHERIC OBSERVATIONS OF WAVES IN PLASMAS
H4*.2: LF/HF INTERFEROMETRY IN LOW EARTH ORBIT USING ELECTROMAGNETIC VECTOR
H5*: ACTIVE EXPERIMENTS IN SPACE AND LABORATORY PLASMAS I
H5*.3: EXPERIMENTAL INVESTIGATION OF TECHNIQUES TO MEASURE COLD ELECTRONS IN
F2: MICROWAVE AND MILLIMETER-WAVE REMOTE SENSING
F2.7: PRECIPITATION RETRIEVAL USING ABI AND GLM MEASUREMENTS ON THE GOES-R
Yifan Yang, Haonan Chen, Kyle Hilburn, Colorado State University, United States
F2.8: SIMULTANEOUS OBSERVATIONS OF PRECIPITATION FROM A VERTICALLY POINTING
F2.9: UNCERTAINTY QUANTIFICATION OF MULTI-SATELLITE PRECIPITATION PRODUCTS

C1: MACHINE LEARNING IN RADAR, REMOTE SENSING, AND ANTENNAS
C1.1: A COMPACT AND LIGHT-WEIGHT GROUND PENETRATING RADAR SYSTEM FOR
C1.3: ENABLING LOW-POWER RADIOMETERS WITH MACHINE LEARNING CALIBRATION
C1.4: OPTIMIZING MACHINE LEARNING ALGORITHMS FOR DYNAMIC DIRECTION FINDING
C1.6: AUTOMATED ANTENNA CALCULATION, DESIGN AND TUNING TOOL FOR HFSS
J3: NEW TELESCOPES, TECHNIQUES, AND TECHNOLOGIES II
J3.4: REAL-TIME RFI EXCISION AT THE VERY LARGE ARRAY
B6*: ANTENNAS AND SYSTEMS FOR SPECIALIZED PLATFORMS AND ENVIRONMENTS
B6*.3: CPW-FED COMPACT CIRCULARLY POLARIZED FLEXIBLE ANTENNA FOR C BAND
B6*.4: UHF/VHF TIGHTLY COUPLED DIPOLE ARRAY FOR CUBESAT-BASED SPACEBORNE ICE
B6*.6: A SHORTED-ANNULAR-RING GPS ANTENNA FOR FREIGHT-CARRYING AUTONOMOUS RAIL
B6*.8: RECONFIGURABLE INTELLIGENT SURFACES FOR ADAPTIVE NULLING AND BEAM
B6*.10: ELECTRIC CHARACTERIZATION OF SANDCAST FOR USE IN RADIO FREQUENCY
K3*: ELECTROMAGNETIC-BASED TECHNOLOGIES FOR HEALTH: TREATMENT, DETECTION, AND MONITORING
K3*.1: PRELIMINARY INVESTIGATION OF COAXIAL PROBE-BASED DIELECTRIC MAPPING OF

K3*.5: CLINICALLY INFORMED HEMORRHAGE PHANTOMS FOR MICROWAVE-BASED STROKE	?62
GH1*: MACHINE LEARNING TECHNIQUES FOR NEAR-EARTH SPACE SCIENCES	
GH1*.2: A METHODOLOGY TO PREDICT THE GEOMAGNETIC FIELD: A PRELIMINARY ANALYSIS	265
GH1*.4: THE EVOLUTION AND PROPAGATION OF CHORUS WAVES BY A MACHINE LEARNING-BASED MODEL Xiangning Chu, David Malaspina, University of Colorado Boulder, United States; Jacob Bortnik, Donglai Ma, Qianli Ma, University of California, Los Angeles, United States; Wen Li, Xiaochen Shen, Sheng Huang, Boston University, United States	268
GH1*.6: EVALUATION OF DIFFERENT MACHINE LEARNING MODELS IN IDENTIFICATIONS OF	N/A
F3: POINT TO POINT PROPAGATION EFFECTS AND REMOTE SENSING	
F3.8: INTERCEPTED SNOW IMPACTS ON BOREAL FOREST TRANSMISSION AT 2.4 GHZ	289
F4: MACHINE LEARNING APPLICATIONS FOR REMOTE SENSING	
F4.1: A SELF-ATTENTION BASED DEEP LEARNING MODEL FOR HURRICANE NOWCASTING	292
F4.4: WEATHER RADAR BEAM BLOCKAGE CORRECTION USING DEEP LEARNING	296
F4.5: MACHINE LEARNING FOR POLARIMETRIC RADAR QUANTITATIVE PRECIPITATION	298
B7*: MULTISCALE AND STOCHASTICS MODELING IN COMPUTATIONAL ELECTROMAGNETICS	5
B7*.1: MACHINE LEARNING FOR RECTANGULAR WAVEGUIDE MODE-IDENTIFICATION, USING 2D MODAL FIELD PATTERNS Brian Guiana, Ata Zadehgol, University of Idaho, United States	311
B7*.2: WIDTH CONFINEMENT IN 3D DIELECTRIC WAVEGUIDES AND COMPARISON TO 2D	313
B7*.3: CIRCUITS FOR JOSEPHSON PARAMETRIC AMPLIFICATION IN QUANTUM RADAR	

B7*.4: NEAR-FIELD SAMPLING CONSIDERATIONS FOR THE PROPAGATION OF STOCHASTIC ELECTROMAGNETIC FIELDS Michael Haider, Johannes Russer, Technical University of Munich, Germany	317
B7*.5: THE SIGNIFICANCE OF NEARBY-TERM APPROXIMATION IN METHOD OF MOMENTS: AN	319
C2: ADVANCES IN SOFTWARE DEFINED AND ADAPTIVE RADIO SYSTEMS	
C2.1: DIGITAL RECEIVER MODERNIZATION USING FPGA AND JESD204B INTERFACE FOR SDR APPLICATIONS Joaquin Verastegui, John Rojas, Isaac Tupac, Luis Gonzales, Jicamarca Radio Observatory, Peru	321
B8*: COMPLEX EM AND META STRUCTURES	
B8*.2: HEXAGONAL PIXELS FACILITATING TOPOLOGICAL DESIGN OF 2-BIT 2-SWITCH	339