Proceedings of ASME 2022 International Mechanical Engineering Congress and Exposition

(IMECE2022)

Volume 7

October 30-November 3, 2022 Columbus, Ohio

Conference Sponsor
American Society of
Mechanical Engineers

Two Park Avenue * New York, N.Y. 10016

© 2022, The American Society of Mechanical Engineers, 2 Park Avenue, New York, NY 10016, USA (www.asme.org)

All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

INFORMATION CONTAINED IN THIS WORK HAS BEEN OBTAINED BY THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS FROM SOURCES BELIEVED TO BE RELIABLE. HOWEVER, NEITHER ASME NOR ITS AUTHORS OR EDITORS GUARANTEE THE ACCURACY OR COMPLETENESS OF ANY INFORMATION PUBLISHED IN THIS WORK. NEITHER ASME NOR ITS AUTHORS AND EDITORS SHALL BE RESPONSIBLE FOR ANY ERRORS, OMISSIONS, OR DAMAGES ARISING OUT OF THE USE OF THIS INFORMATION. THE WORK IS PUBLISHED WITH THE UNDERSTANDING THAT ASME AND ITS AUTHORS AND EDITORS ARE SUPPLYING INFORMATION BUT ARE NOT ATTEMPTING TO RENDER ENGINEERING OR OTHER PROFESSIONAL SERVICES. IF SUCH ENGINEERING OR PROFESSIONAL SERVICES ARE REQUIRED, THE ASSISTANCE OF AN APPROPRIATE PROFESSIONAL SHOULD BE SOUGHT.

ASME shall not be responsible for statements or opinions advanced in papers or . . . printed in its publications (B7.1.3). Statement from the Bylaws.

For authorization to photocopy material for internal or personal use under those circumstances not falling within the fair use provisions of the Copyright Act, contact the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923, tel: 978-750-8400, www.copyright.com.

Requests for special permission or bulk reproduction should be addressed to the ASME Publishing Department, or submitted online at: https://www.asme.org/publications-submissions/journals/information-for-authors/journalguidelines/rights-and-permissions

ISBN: 978-0-7918-8669-4

TABLE OF CONTENTS

Hybrid Propellant Rocket Engine	1
Open-Source Virtual Labs for Undergraduate Mechanical Vibrations and Control Theory Courses Andrea Contreras-Esquen, Tristan Utschig, Ayse Tekes	11
Virtual Vibrations Laboratory	18
Benchmarking Various Nonlinear Control Design Techniques for a Two-Link Planar Robot Arm	31
Characterizing the Training and Evaluation of Graduate Teaching Assistants (GTAs) at Research- Intensive Universities: Highlighting Best Practices and Opportunities for Reform	40
Selection of Industry 4.0 Competencies for Implementation in a New Mechanical Engineering Undergraduate Program	48
Empowering Master Students to Pull What They Want to Learn	56
Competition Based Learning in Engineering Education	65
Preparing Generation Z: Beyond Technologies	72
Optimizing the Curriculum in a Heating Ventilation and Air Conditioning Class With Realistic Labs, Projects and Interesting Realistic Problems to Enhance Learning	79
Improvement of API Program to Evaluate Three-Dimensional CAD Models	88
Inclusion of Continuous Annuities in Engineering Economics Instruction	94
An Experiential Design Thinking Course for Freshmen Mechanical Engineering Students	100
Considerations for Developing an Engaging Management Curriculum for Undergraduate Engineering Students During COVID-19: A Case of Operations Management at the University of Manchester	108
Akilu Yunusa-Kaltungo, Nafisatu Irene Okhade, Rukaiyatu Mohammed Jungudo	
Making a Case for Innovative Assessment Frameworks for Large Cohorts of Undergraduate Engineering Students on Management Units Akilu Yunusa-Kaltungo, Rukaiyatu Mohammed Jungudo	116

Methodology for the Design of Demonstrative Didactic Prototypes for the Teaching of Renewable Energies Based on Education for Sustainable Development `ESD'	125
Juan Peralta, Emerita Delgado, Fausto Maldonado, Galo Durazno, Livingston Miranda- Delgado, Alexander Prieto, Jose Reinoso	120
Viable and Sustainable Measures of Meeting Student Outcomes Related to Communication in Graduate Capstone Projects and Specialty Papers	134
nnovations for Clutching and Shifting in Formula-Style Drivetrains	144
Design of a Clutching and Braking System to Automate a Chain-Coupled Dual Planetary Gearing	152
Megan Cann, Robert Speed, Abraham Moreno, Salim Azzouz	102
Assessing Undergraduate Students' Level of Awareness of Commercialization of Engineering Research Innovation at a Historically Black College and University	162
Summer Grants `Verao Com Ciencia', From Foundation for Science and Technology, in Portugal: Experience and Achievements	170
Nelson Rodrigues, Ines Teixeira, Violeta Carvalho, Ines Abreu, Ines Goncalves, Diogo Gracoeiro, Rita Amaral, Joao Marques, Joao Silva, Ana Ferreira, Jose Teixeira, Filipe Alvelos, Cristina Rodrigues, Senhorinha Teixeira	
Introducing Integral Engineering Skillsets to the Diverse Population of Underrepresented Students at the University of the District of Columbia via the NASA Human Exploration Rover Challenge	177
ntegration of Data Science Into Thermal-Fluids Engineering Education	183
ndustry-Based Thermodynamics Case Study on Refrigeration Cycle	193
Excel(R) VBA for Thermal Science Applications	200
Development of a Small Project on Spray Combustion for an Undergraduate Fluid Dynamics Class John Palmore Jr.	209
A Case Study of Collaborative Teaching and Learning in Engineering Experimentation: the Hydrostatic Vacuum Tube	215
Kamau Wright, David Wootton, George Sidebotham, Melody Baglione, Reid Chambers, Jason He, Zachary Potoskie, Lionel Gilliar-Schoenenberger	
Promoting Globalization of Engineering by Developing Students' Potential for Productive Communication and Interaction Using Transactional Analysis in a Historically Black College and	225
Jniversity	223
Development of a Continuous Improvement Tool for Outgoing Erasmus: First Results	232

An Undergraduate Research Study: Effect of Welding Methods and Weld Puddle Manipulation on the Tensile Strength of Welded Joints	240
Introduction to Composite Materials in a Finite Element Method Course	248
A STEM Roadmap for Pre-Collegiate Engineering Students	253
Experiential Learning for Undergraduate Students Through Collaborative Capstone Projects on Advanced Manufacturing	262
Part Metrology and Defect Detection Using Machine Vision	268
Miniaturized Models in Engineering Education	273
Improving Self-Efficacy of Financially Disadvantaged Students via Autonomous Design and Build Project	280
Recycling of Campus Solid Wastes Into a Low-Cost Green Instructional Equipment	288
Experimental Core Flooding Test for Formation Damage During Gel Treatment	296
Learning by Doing in the Dynamics and Mechanical Vibrations Courses Using 3D Printed Equipment Thuong Tran, Tinh Tran, Kevin Tran, Karena Oun, Ayse Tekes	301
Five Key Attitudes for a Successful Co-Op: the Value of Cooperative Education Within an Undergraduate Program	308
Automation of a Dual Planetary Gearing Transmission Using Control Mechanisms and a Programmable Logic Controller	314
Flexible Drilling/Reaming Manufacturing System Using a Kawasaki Robot and a Cognex Vision Inspection System	322

Author Index