31st Annual Saudi-Japan Symposium on Technology in Petroleum Refining and Petrochemicals 2022

Dhahran, Saudi Arabia 12-13 December, 2022

ISBN: 978-1-7138-7084-5

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2022) by King Fahd University of Petroleum & Minerals All rights reserved.

Printed with permission by Curran Associates, Inc. (2023)

For permission requests, please contact King Fahd University of Petroleum & Minerals at the address below.

King Fahd University of Petroleum & Minerals Dhahran 31261 Kingdom of Saudi Arabia

Phone: +966 (13) 860 0000

info@kfupm.edu.sa

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2633 Email: curran@proceedings.com Web: www.proceedings.com

Contents

No	Presentation Title and Speaker	Page
	Symposium Program	5
2	Keynote: JPI direction along carbon neutrality and introduction of our research trend for use of NanoTerasu, next generation synchrotron radiation facility, <i>Dr. Atsushi Muramatsu, President of JPI, Associate Executive Vice President and Director of International Center for Synchrotron Radiation Innovation Smart, Japan</i>	8
3	Residue upgrading by hydroprocessing deasphalted oil, Dr. Koichi Matsushita, ENEOS Corporation, Japan	20
4	A high-throughput approach to study cation-exchanged zeolites, Dr. Hassan Aljama, Saudi Aramco R&DC	25
5	Catalytic manufacture of ethylene–1-hexene thermoplastic elastomer: Thermodynamic process development, <i>Dr. Muhammed Atiqullah, Center Refining</i> & Adv. Chemicals, KFUPM	26
6	Hierarchical nano-sized zeolite Beta development for crude oil hydrocracking catalysts Dr. Lianhui Ding, Saudi Aramco R&DC	30
7	Digital chemistry guided development of novel ligands for selective ethylene tetramerization , Dr. Dr. Mohamed Elanany, Saudi Aramco R&DC	31
8	High-throughput screening and literature data driven machine learning (ML) assisting discovery of La₂O₃-based catalysts for low temperature oxidative coupling of methane, <i>Associate Prof. Shun Nishimura, Japan Advanced Institute of</i> <i>Science and Technology, Japan</i>	32
9	Optimal design of AI-based models integrated with Ensemble ML paradigms for crude to chemicals applications, <i>Dr. Abdulkadir Tanimu, IRC Refining & Adv.</i> <i>Chemicals, KFUPM</i>	43
10	Disruptive water electrolyzer system for cost-effective hydrogen production: Electrolyte engineering, <i>Prof. Kazuhiro Takanabe, Dept. Chemical System</i> <i>Engineering, University of Tokyo</i>	50
11	Development of low temperature steam reforming catalyst for hydrogen production for fuel cells , Dr. Shakeel Ahmed, IRC Refining & Adv. Chemicals, KFUPM	56
12	Thermo-catalytic production of hydrogen from H₂S: challenges and opportunities, <i>Dr. Zainab A. Aithan, Saudi Aramco R&DC</i>	57
13	Titania supported bimetallic catalyst for hydrogen production from methane, Dr. Wasim Ullah Khan, IRC Refining & Adv. Chemicals, KFUPM	58
14	Ammonia to hydrogen: cracking technology , Dr. Stephen Paglieri, Saudi Aramco R&DC	60
15	Redox dehydrogenation of propane utilizing lattice S²- in metal sulfide catalyst, Associate Prof. Ryo Watanabe, Shizuoka University, Japan	61
16	An engineered bimetallic Fe-Cu-MOR zeolite catalyst for direct oxidation of methane to methanol Dr. Ijaz Hussain, IRC Refining & Adv. Chemicals, KFUPM	67
17	C-H and C-C of propane activation assisted by CO ₂ for propylene and ethylene using bimetallic catalysts, <i>Dr. Emad N. Al-Shafei, Saudi Aramco R&DC</i>	68
18	CO₂ capture and conversion analysis technology development: TRL1 to TRL9 , <i>Dr. Ali S. Al-Hunaidy, Saudi Aramco R&DC</i>	70

No	Presentation Title and Speaker	Page
19	Ceria-catalyzed synthesis of aliphatic polycarbonate diols from atmospheric flow carbon dioxide and diols without using dehydrating agents, <i>Prof. Keiichi Tomishige, Chairman of JPI Committee and Tohoku University, Japan</i>	71
20	Contaminants in plastic derived oil: A thorn in the flesh of plastic circularity?, <i>Dr. Aaron Akah, Saudi Aramco R&DC</i>	81
21	Conversion of rubber waste to liquid hydrocarbon fuel via thermal liquefaction process using solvent , Dr. Nabeel Ahmad, IRC Refining & Advanced Chemicals, KFUPM	82
	POSTERS	
P1	Chemometrics study of sulfur reactivity in hydrodesulfurization process , <i>Ms.</i> <i>Hutoon Alhargan, Saudi Aramco R&DC</i>	85
P2	Development of hierarchical CoMo/Beta zeolite for BTX production , <i>Ms. Eman</i> <i>Albaher, Saudi Aramco R&DC</i>	86
P3	Development of new mesoporous materials for refining processes , Dr. Sathiyamoorthy Murugesan, Center Refining & Adv. Chemicals, KFUPM	87
P4	Thermal liquefaction of waste polystyrene plastic to liquid hydrocarbon fuel using ethanol as a solvent , Dr. Nabeel Ahmad, Center Refining & Adv. Chemicals, KFUPM	88
Р5	Oxidative dehydrogenation of n-butane to produce petrochemical key building blocks (ethylene, propylene, and butadiene), Mr. Ahmad Sabban, CHE, KFUPM	89
P6	Controlled autoxidation of heavy petroleum to produce carbon fiber precursors, <i>Mr. Lahmady S. Mohamed, CHE, KFUPM</i>	90
P7	Characterization of soot from atmospheric combustion of diesel/gasoline- oxygenate blends, Mr. Mohammed Qasem, CHE, KFUPM	91
P8	Turning municipal solid waste into fuel via integrated thermochemical and electrochemical processes, Mr. Achmad Putra, CHE, KFUPM	92
Р9	CO₂-assisted oxidative dehydrogenation of propane to propylene over MoO₃ catalyst, <i>Mr. Suleiman Magaji, CHE, KFUPM</i>	93
P10	Effects of metal support interaction on dry reforming of methane over Ni/Ce-Al ₂ O ₃ catalysts, <i>Mr. Ariel Gursida, CHE, KFUPM</i>	94
