2022 IEEE 21st International **Conference on Ubiquitous Computing and Communications** (IUCC/CIT/DSCI/SmartCNS 2022)

Chongqing, China 19-21 December 2022

IEEE Catalog Number: CFP22IUC-POD ISBN:

978-1-6654-7727-7

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP22IUC-POD

 ISBN (Print-On-Demand):
 978-1-6654-7727-7

 ISBN (Online):
 978-1-6654-7726-0

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633 E-mail: curran@proceedings

E-mail: curran@proceedings.com Web: www.proceedings.com

2022 IEEE 21st International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS)

IUCC-CIT-DSCI-SmartCNS 2022

Table of Contents

Message from the IEEE IUCC 2022 General Chairs	xii i
Message from the IEEE IUCC 2022 Program Chairs	xiv
IEEE IUCC 2022 Organizing Committee	xv
Message from the IEEE CIT 2022 General Chairs	xvi
Message from the IEEE CIT 2022 Program Chairs	
IEEE CIT 2022 Organizing Committee	. xviii
Message from the IEEE DSCI 2022 General Chairs	xix
Message from the IEEE DSCI 2022 Program Chairs	xx
IEEE DSCI 2022 Organizing Committee	xx i
Message from the MVIC Workshop 2022 Chairs	xxi i
Communications (IEEE IIICC 2022)	
Communications (IEEE IUCC-2022) Session IUCC_01: Ubiquitous Computing Technology	
	1
Session IUCC_01: Ubiquitous Computing Technology A Ransomware Classification Method Based on Entropy Map	

Predictive Information Workflow of Forecasting Number of COVID-19 Confirmed Cases
Session IUCC_02: Ubiquitous Communications Technology
Blind Spectrum Sensing Scheme Based on Harmonic Mean of Eigenvalues of Sample Covariance Matrix
A Service Placement Algorithm Based on Merkle Tree in MEC Systems Assisted by Digital Twin Networks
Chengan Dai (University of Electronic Science and Technology of China, China), Kun Yang (University of Electronic Science and Technology of China, China), and Chunjian Deng (University of Electronic Science and Technology of China, China; University of Electronic Science and Technology of China, China)
Electric Vehicle Charging Load Forecasting Based on Ownership
Real-Time Dynamic Trajectory Planning for Intelligent Vehicles Based on Quintic Polynomial 51 Zefu Tan (Chongqing Three Gorges University, China), Jian Wei (Chongqing Three Gorges University, China), and Nina Dai (Chongqing Three Gorges University, China)
The 21th IEEE International Conference on Computer and Information Technology (IEEE CIT-2022) Session CIT_01: Computer Science and Information Technology
Pervasive Container Computing — A Fine-Grained Loosely Coupled Cloud Cluster
An IoT Device Identification Method over Encrypted Traffic Based on t-SNE Dimensionality

Cooperative Caching Strategy Based on Dynamic Cache Value Perception in Edge Networks
Multifactor Recommendation-Based Video Caching Strategy in Mobile Edge Computing
Optimal Decomposable QAM Constellations for Minimizing Symbol-Error Probability
Session CIT_02: Networking and Communications
Survivable Virtual Sensor Networks Embedding Strategy for Link Failures
China), Yue Guo (Xuchang Branch of Henan Provincial, Tobacco Company, China), Junfeng Hou (Xuchang Branch of Henan Provincial, Tobacco Company, China), Hongjun Zhang (Xuchang Branch of Henan Provincial, Tobacco Company, China), Genqin Zhang (Xuchang Branch of Henan Provincial, Tobacco Company, China), and Yajie Chai (Xuchang Branch of Henan Provincial, Tobacco Company, China), and Yajie Chai (Xuchang Branch of Henan Provincial, Tobacco Company, China)
China), Yue Guo (Xuchang Branch of Henan Provincial, Tobacco Company, China), Junfeng Hou (Xuchang Branch of Henan Provincial, Tobacco Company, China), Hongjun Zhang (Xuchang Branch of Henan Provincial, Tobacco Company, China), Genqin Zhang (Xuchang Branch of Henan Provincial, Tobacco Company, China), and Yajie Chai (Xuchang Branch of
China), Yue Guo (Xuchang Branch of Henan Provincial, Tobacco Company, China), Junfeng Hou (Xuchang Branch of Henan Provincial, Tobacco Company, China), Hongjun Zhang (Xuchang Branch of Henan Provincial, Tobacco Company, China), Genqin Zhang (Xuchang Branch of Henan Provincial, Tobacco Company, China), and Yajie Chai (Xuchang Branch of Henan Provincial, Tobacco Company, China) Multi-Dimensional User-Sensitive Information Portrait for Social Networks

Session CIT_03: Information Security

Actor-Critic Changjin Li (Xuchang Branch of Henan Provincial, China), Guangxu Zhou (Xuchang Branch of Henan Provincial, China), Yue Guo (Xuchang Branch of Henan Provincial, China), Junfeng Hou (Xuchang Branch of Henan Provincial, China), Hongjun Zhang (Xuchang Branch of Henan Provincial, China), and Song Li (Xuchang Branch of Henan Provincial, China), and Song Li (Xuchang Branch of Henan Provincial,	132
SFTA: Spiking Neural Networks Vulnerable to Spiking Feature Transferable Attack Xuanwei Lin (Fuzhou University, China), Chen Dong (Fuzhou University, China), and Ximeng Liu (Fuzhou University, China)	140
Cross-Chain Jamming Attack with Light Client Verification Clash in IBC Protocol	150
Performance Improvement of DDoS Intrusion Detection Model using Hybrid Deep Learning Method in the SDN Environment Ameni Chetouane (RIADI Laboratory, National School of Computer Science National Institute of Applied Sciences and Technologies, Tunisia) and Kamel Karoui (RIADI Laboratory, National School of Computer Science National Institute of Applied Sciences and Technologies, Tunisia)	159
ZRA: A Secure and Radical Auction Scheme for Blockchain with Privacy Preservation	167
A Security Enhancement Scheme For Raft Consensus Algorithm Against Term Forgery Attacks Yichuan Wang (Xi'an University of Technology, China; Shaanxi Key Laboratory for Network Computing and Security Technology, China), Mengjie Tian (Xi'an University of Technology, China), Yaling Zhang (Xi'an University of Technology, China), Xiaoxue Liu (Xi'an University of Technology, China), Yeqiu Xiao (Xi'an University of Technology, China), and Xinhong Hei (Xi'an University of Technology, China; Shaanxi Key Laboratory for Network Computing and Security Technology, China)	1 <i>7</i> 5

The 5th IEEE International Conference on Data Science and Computational Intelligence (IEEE DSCI-2022)

Session DSCI_01: Social Network Analysis and Applications

Relation Prediction of N-ary Knowledge Graph Based on Multi-Information Propagation Peijie Wang (Shaanxi Normal University, China), Jianrui Chen (Shaanxi Normal University, China), Luheng Yang (Shaanxi Normal University, China), and Julong Li (Shaanxi Normal University, China)	184
A Global Opinion-Influencing Consensus Model Based on the DeGroot Yuntian Zhang (Xihua University, China), Xiaoliang Chen (Xihua University, China), Zexia Huang (Xihua University, China), Xianyong Li (Xihua University, China), and Yajun Du (Xihua University, China)	191
Personalized Learning Resource Recommendation Based on Learner Profile	198
Encoding Following Information with Graph Attention Network for Opinion Prediction Jiajian Jiang (Xihua University, China), Xiaoliang Chen (Xihua University, China), Yuntian Zhang (Xihua University, China), Zexia Huang (Xihua University, China), Xianyong Li (Xihua University, China), and Yajun Du (Xihua University, China)	204
Session DSCI_02: Data Analytics and Mining	
Composite Interference Signals Recognition Based on YOLOv5	210
An Improved Network Security Situational Awareness Method Based on IGA-BiLSTM	216
FRD: Few-Shot Rumor Detection for the Novel Coronavirus Pneumonia Epidemic	224
Knowledge Tracing with Multi-Feature Fusion and Question Difficulty Haikun Liu (Shaanxi Normal University, China), Weijie Peng (Shaanxi Normal University, China), and Chao Qi (Shaanxi Normal University, China)	231

Towards Fast Edge Detection Approach for Industrial Products
The 1st International Workshop on Machine Vision and Intelligent Control (MVIC-2022)
Session MVIC_01: Image Processing and Target Recognition
A Parallel Compression Framework for Fractal Images using DCT Block Classification
Self-Similarity Verification of Special Images Such as Microscopy
An Effective Automatic Recognition Approach of Chinese Herbal Medicine by Micro Image Processing
Research on Level Set Based on CV Model for Spatial Multi-Target Recognition
License Plate Recognition System Based on Image Recognition
Session MVIC_02: Intelligent Control Theory and Application
Research on Lane Detection Algorithm Based on Wavelet Analysis and Hough Transform

Research on Optimization Control of Deep Hole Machining Based on Capuchin Search Algorithm to Optimize Fuzzy PID	
Chang Qin (Wuzhou University, China), Hongzhi Hu (Guilin University of	
Electronic Science and Technology, China), HuaiZhi Chen (Guilin	
University of Electronic Science and Technology, China), and BaoXian	
Yan (Guilin University of Electronic Science and Technology, China)	
An Individual Dribbling Control Strategy for Virtual Humans Combining Kinetic Animation	
and Lightweight Physics	
Yuling Yang (Wuzhou University, China), Caichun Cen (University of	
Science and Technology, China), Xiaoshan Mo (Wuzhou University,	
China), and Jingjie Liao (Wuzhou University, China)	
Thermal-Aware Energy Efficient Task Scheduling Framework	
Jian Nong (Macau University of Science and Technology, China; Wuzhou	
University, China), Jia Chen (Wuzhou University, China), Yinqing Wang	
(Wuzhou University, China), Wei Qin (Wuzhou University, China), and Xi	
He (Wuzhou University, China)	
Digital Yard Remote Control Solution for Cement Manufacturing Based on Industrial IOT 310	
Xiongjie Tao (Hubei Normal University, China), Hui Guo (Macao	
University of Science and Technology, China), and Caixu Xu (Wuzhou	
University, China)	
Underwater LED Light MIMO Telecentric Optical Path Technology Research	
Jiangnan Liu (Guilin University of Electronic Technology, China),	
Guojin Peng (Guilin University of Electronic Technology, China), and	
Guojin Feng (Guith University of Electronic Technology, China), and	
Jiapeng Su (Guilin University of Electronic Technology, China)	
Jiapeng Su (Guilin University of Electronic Technology, China)	
Jiapeng Su (Guilin University of Electronic Technology, China) Session MVIC_03: Digital Twin Technology The Design of a Mechanical Force Feedback VR Data Glove	
Jiapeng Su (Guilin University of Electronic Technology, China) Session MVIC_03: Digital Twin Technology The Design of a Mechanical Force Feedback VR Data Glove	
Jiapeng Su (Guilin University of Electronic Technology, China) Session MVIC_03: Digital Twin Technology The Design of a Mechanical Force Feedback VR Data Glove	
Session MVIC_03: Digital Twin Technology The Design of a Mechanical Force Feedback VR Data Glove	
Session MVIC_03: Digital Twin Technology The Design of a Mechanical Force Feedback VR Data Glove	
Session MVIC_03: Digital Twin Technology The Design of a Mechanical Force Feedback VR Data Glove	
Session MVIC_03: Digital Twin Technology The Design of a Mechanical Force Feedback VR Data Glove	
Session MVIC_03: Digital Twin Technology The Design of a Mechanical Force Feedback VR Data Glove	
Session MVIC_03: Digital Twin Technology The Design of a Mechanical Force Feedback VR Data Glove	
Session MVIC_03: Digital Twin Technology The Design of a Mechanical Force Feedback VR Data Glove	
Session MVIC_03: Digital Twin Technology The Design of a Mechanical Force Feedback VR Data Glove	
Session MVIC_03: Digital Twin Technology The Design of a Mechanical Force Feedback VR Data Glove	
Session MVIC_03: Digital Twin Technology The Design of a Mechanical Force Feedback VR Data Glove	
Session MVIC_03: Digital Twin Technology The Design of a Mechanical Force Feedback VR Data Glove	
Session MVIC_03: Digital Twin Technology The Design of a Mechanical Force Feedback VR Data Glove	
Session MVIC_03: Digital Twin Technology The Design of a Mechanical Force Feedback VR Data Glove	
Session MVIC_03: Digital Twin Technology The Design of a Mechanical Force Feedback VR Data Glove	

Research on Virtual Human Swarm Football Collaboration Technology Based on Reinforcement
Learning
Restoration of an 18th Century Corset Based on CLO 3D Virtual Technology
Session MVIC_04: Data Perception and Intelligence
A Password-Authentication Scheme Based on Ciphertext Random Sampling Transmission
Handwritten Chinese Character Recognition Based on Convolutional Neural Networks and TrueType Font Template Matching
Emotional Dialogue Generation Based on Transformer and Conditional Variational Autoencoder 386 Hongquan Lin (Wuzhou University, China) and Zhenrong Deng (Guilin University of Electronic Technology, China)
Knowledge Base Question Answering via Structured Query Generation using Question Domain 394 Jiecheng Li (Guangxi Normal University, China), Zizhen Peng (Wuzhou University, China; Guangxi Colleges and Universities, China), Xiaoying Zhu (Wuzhou University, China; Guangxi Colleges and Universities, China), and Keda Lu (Wuzhou University, China; Guangxi Colleges and Universities, China)
An Efficient Method for Finding Mislabeled Samples of Similar Chinese Characters
Channel Modeling and Signal Processing for Underwater Massive MIMO System Under Link Misalignment
Author Index